Behbahani Elham Sadati, Dashtian Kheibar, Ghaedi Mehrorang
Chemistry Department, Yasouj University, Yasouj 75914-35, Iran.
Chemistry Department, Yasouj University, Yasouj 75914-35, Iran.
J Hazard Mater. 2021 May 15;410:124560. doi: 10.1016/j.jhazmat.2020.124560. Epub 2020 Nov 17.
There have always been numerous challenges to designing a cost-effectiveness, reusable and robust adsorbents for simultaneous heavy metal ion remediations from wastewaters. Herein, a novel kind of nanocomposite relying on the synergic impact of magnetic FeO, FeMoS, and magnesium-aluminum layered double hydroxide (MgAl-LDH) using loading the FeMoS on protonated FeO and adhered to the surface of Mg/Al-LDH (FeO/FeMoS/MgAl-LDH). The nanocage structures adsorbent was characterized via FT-IR, XRD, FE-SEM, EDX, and VSM techniques and demonstrated having an efficient adsorption capability to common cationic pollutants (Pb (II), Cd (II) and Cu (II) by batch experiments. Disparate chief parameters affecting adsorption performance, including FeO/FeMoS/MgAl-LDH mass, metal ion concentrations, solution pH, and contact time were considered and optimized through central composite design (CCD) in detail. Its supreme adsorption efficiency toward Pb (II), Cd (II), and Cu (II) accounted for 190.75, 140.50, and 110.25 mg g, respectively, which acquired by the Langmuir model under the parameter set at 60 min contact time, solution pH at 5, 0.03 g the FeO/FeMoS/MgAl-LDH and metal ion concentrations ranging from 10 to 300 mg L. Such enhancement stemmed from the coordinated complexes in the LDH interlayer region and electrostatic attraction between FeO/FeMoS/MgAl-LDH and metal ions. Furthermore, the adsorption conducts were more consistent with the pseudo-second-order model and the Langmuir isotherm model, respectively. Likewise, the features such as the superior regeneration and reusability allow the FeO/FeMoS/MgAl-LDH nanocomposite to constitute as one of the promising materials for heavy metals remediation in wastewater.
设计一种具有成本效益、可重复使用且坚固耐用的吸附剂,用于同时从废水中去除重金属离子,一直存在诸多挑战。在此,一种新型纳米复合材料应运而生,它借助磁性FeO、FeMoS和镁铝层状双氢氧化物(MgAl-LDH)的协同作用,将FeMoS负载在质子化的FeO上,并附着于Mg/Al-LDH(FeO/FeMoS/MgAl-LDH)表面。通过傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、能谱分析(EDX)和振动样品磁强计(VSM)技术对这种纳米笼结构吸附剂进行了表征,并通过分批实验证明其对常见阳离子污染物(Pb (II)、Cd (II) 和Cu (II))具有高效吸附能力。详细考虑并通过中心复合设计(CCD)优化了影响吸附性能的不同主要参数,包括FeO/FeMoS/MgAl-LDH质量、金属离子浓度、溶液pH值和接触时间。在接触时间为60分钟、溶液pH值为5、FeO/FeMoS/MgAl-LDH为0.03克且金属离子浓度为10至300毫克/升的参数设置下,其对Pb (II)、Cd (II) 和Cu (II) 的最高吸附效率分别为190.75、140.50和110.25毫克/克,这是由朗缪尔模型得出的。这种增强源于LDH层间区域的配位络合物以及FeO/FeMoS/MgAl-LDH与金属离子之间的静电吸引。此外,吸附行为分别更符合准二级模型和朗缪尔等温线模型。同样,其优异的再生和可重复使用特性使FeO/FeMoS/MgAl-LDH纳米复合材料成为废水中重金属修复的有前景材料之一。
J Colloid Interface Sci. 2018-7-31
J Colloid Interface Sci. 2019-12-9
Nanomaterials (Basel). 2024-6-16
Int J Environ Res Public Health. 2022-9-5