Suppr超能文献

基于网络药理学探讨自圣神奇汤治疗痛风性关节炎的作用机制。

Exploration of the mechanism of Zisheng Shenqi decoction against gout arthritis using network pharmacology.

机构信息

Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.

Department of Integrated Chinese and Western medicine, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.

出版信息

Comput Biol Chem. 2021 Feb;90:107358. doi: 10.1016/j.compbiolchem.2020.107358. Epub 2020 Aug 8.

Abstract

BACKGROUND

In this study, the network pharmacological methods were used to predict the target of effective components of compounds in Zisheng Shenqi Decoction (ZSD, or Nourishing Kidney Qi Decoction) in the treatment of gouty arthritis (GA).

METHOD

The main effective components and corresponding key targets of herbs in the ZSD were discerned through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis (TCMSP), Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine (BATMAN-TCM) database. UniProt database and Swiss Target Prediction (STP) database was used to rectify and unify the target names and supply the target information. The targets related to GA were obtained by using GeneCards database. After we discovered the potential common targets between ZSD and GA, the interaction network diagram of "ZSD-component-GA-target" was constructed by Cytoscape software (Version 3.7.1). Subsequently, the Protein-protein interaction (PPI) network of ZSD effective components-targets and GA-related targets was constructed by Search Tool for the Retrieval of Interacting Genes Database (STRING). Bioconductor package "org.Hs.eg.db" and "cluster profiler" package were installed in R software (Version 3.6.0) which used for Gene Ontology analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis.

RESULTS

146 components and 613 targets of 11 herbal medicines in the ZSD were got from TCMSP database and BATMAN-TCM database. 987 targets of GA were obtained from GeneCards database. After intersected and removed duplications, 132 common targets between ZSD and GA were screened out by Cytoscape software (Version 3.7.1). These common targets derived from 81 effective components of 146 components, such as quercetin, stigmasterol and kaempferol. They were closely related to anti-inflammatory, analgesic and anti oxidative stress and the principal targets comprised of Purinergic receptor P2X, ligand-gated ion channel 7 (P2x7R), Nod-like receptor protein 3 (NLRP3) and IL-1β. GO enrichment analysis and KEGG pathway enrichment analysis by R software (Version 3.6.0) showed that the key target genes had close relationship with oxidative stress, reactive oxygen species (ROS) metabolic process and leukocyte migration in aspects of biological process, cell components and molecular function. It also indicated that ZSD could decrease inflammatory reaction, alleviate ROS accumulation and attenuate pain by regulating P2 × 7R and NOD like receptor signaling pathway of inflammatory reaction.

CONCLUSION

A total of 81 effective components and 132 common target genes between ZSD and GA were screened by network pharmacology. The PPI network, GO enrichment analysis and KEGG pathway enrichment analysis suggested that ZSD can exerte anti-inflammatory and analgesic effects on the treatment of GA by reducing decreasing inflammatory reaction, alleviating ROS accumulation, and attenuating pain. The possible molecular mechanism of it mainly involved multiple components, multiple targets and multiple signaling pathways, which provided a comprehensive understanding for further study. In general, the network pharmacological method applied in this study provides an alternative strategy for the mechanism of ZSD in the treatment of GA.

摘要

背景

本研究采用网络药理学方法预测滋肾生肌汤(ZSD,即补肾气汤)治疗痛风性关节炎(GA)的化合物有效成分的作用靶点。

方法

通过中药系统药理学数据库和分析(TCMSP)、中药生物信息学分析工具(BATMAN-TCM)数据库,确定 ZSD 中草药的主要有效成分和相应的关键靶点。Uniprot 数据库和瑞士靶向预测(STP)数据库用于校正和统一靶点名称并提供靶点信息。使用 GeneCards 数据库获得与 GA 相关的靶点。在发现 ZSD 与 GA 之间的潜在共同靶点后,使用 Cytoscape 软件(版本 3.7.1)构建“ZSD-成分-GA-靶点”的相互作用网络图。随后,通过 Search Tool for the Retrieval of Interacting Genes Database(STRING)构建 ZSD 有效成分-靶点和 GA 相关靶点的蛋白质-蛋白质相互作用(PPI)网络。在 R 软件(版本 3.6.0)中安装了 Bioconductor 包“org.Hs.eg.db”和“cluster profiler”包,用于基因本体论分析和京都基因与基因组百科全书(KEGG)通路富集分析。

结果

从 TCMSP 数据库和 BATMAN-TCM 数据库获得了 ZSD 中 11 种草药的 146 种成分和 613 个靶点,从 GeneCards 数据库获得了 987 个 GA 靶点。通过 Cytoscape 软件(版本 3.7.1)交叉和去除重复后,筛选出 ZSD 和 GA 之间的 132 个共同靶点。这些共同靶点来源于 81 种有效成分中的 146 种成分,如槲皮素、豆甾醇和山奈酚。它们与抗炎、镇痛和抗氧化应激密切相关,主要靶点包括嘌呤能受体 P2X、配体门控离子通道 7(P2x7R)、Nod 样受体蛋白 3(NLRP3)和白细胞介素 1β。通过 R 软件(版本 3.6.0)的基因本体论分析和 KEGG 通路富集分析表明,关键靶基因在生物学过程、细胞成分和分子功能方面与氧化应激、活性氧(ROS)代谢过程和白细胞迁移密切相关。这也表明 ZSD 可以通过调节 P2×7R 和 NOD 样受体炎症信号通路,降低炎症反应、减轻 ROS 积累和缓解疼痛,从而减轻炎症反应、减轻 ROS 积累和缓解疼痛。

结论

通过网络药理学共筛选出 ZSD 与 GA 之间的 81 种有效成分和 132 个共同靶基因。PPI 网络、GO 富集分析和 KEGG 通路富集分析表明,ZSD 通过减少炎症反应、减轻 ROS 积累和缓解疼痛对 GA 发挥抗炎和镇痛作用。其可能的分子机制主要涉及多个成分、多个靶点和多个信号通路,为进一步研究提供了全面的认识。总的来说,本研究应用的网络药理学方法为 ZSD 治疗 GA 的机制提供了一种替代策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验