Suppr超能文献

[基于自适应Unet网络的鼻咽癌放疗危及器官分割]

[Segmentation of organs at risk in nasopharyngeal cancer for radiotherapy using a self-adaptive Unet network].

作者信息

Yang Xin, Li Xueyan, Zhang Xiaoting, Song Fan, Huang Sijuan, Xia Yunfei

机构信息

Sun Yat- sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China.

Xinhua College of Sun Yat-sen University, Guangzhou 510520, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2020 Nov 30;40(11):1579-1586. doi: 10.12122/j.issn.1673-4254.2020.11.07.

Abstract

OBJECTIVE

To investigate the accuracy of automatic segmentation of organs at risk (OARs) in radiotherapy for nasopharyngeal carcinoma (NPC).

METHODS

The CT image data of 147 NPC patients with manual segmentation of the OARs were randomized into the training set (115 cases), validation set (12 cases), and the test set (20 cases). An improved network based on three-dimensional (3D) Unet was established (named as AUnet) and its efficiency was improved through end-to-end training. Organ size was introduced as a priori knowledge to improve the performance of the model in convolution kernel size design, which enabled the network to better extract the features of different organs of different sizes. The adaptive histogram equalization algorithm was used to preprocess the input CT images to facilitate contour recognition. The similarity evaluation indexes, including Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD), were calculated to verify the validity of segmentation.

RESULTS

DSC and HD of the test dataset were 0.86±0.02 and 4.0±2.0 mm, respectively. No significant difference was found between the results of AUnet and manual segmentation of the OARs ( > 0.05) except for the optic nerves and the optic chiasm.

CONCLUSIONS

AUnet, an improved deep learning neural network, is capable of automatic segmentation of the OARs in radiotherapy for NPC based on CT images, and for most organs, the results are comparable to those of manual segmentation.

摘要

目的

探讨鼻咽癌(NPC)放射治疗中危及器官(OARs)自动分割的准确性。

方法

将147例有OARs手动分割的NPC患者的CT图像数据随机分为训练集(115例)、验证集(12例)和测试集(20例)。建立了一种基于三维(3D)Unet的改进网络(命名为AUnet),并通过端到端训练提高其效率。在卷积核大小设计中引入器官大小作为先验知识,以提高模型性能,使网络能够更好地提取不同大小不同器官的特征。采用自适应直方图均衡化算法对输入的CT图像进行预处理,以利于轮廓识别。计算相似性评估指标,包括骰子相似系数(DSC)和豪斯多夫距离(HD),以验证分割的有效性。

结果

测试数据集的DSC和HD分别为0.86±0.02和4.0±2.0 mm。除视神经和视交叉外,AUnet与OARs手动分割结果之间差异无统计学意义(>0.05)。

结论

AUnet是一种改进的深度学习神经网络,能够基于CT图像对NPC放射治疗中的OARs进行自动分割,对于大多数器官,其结果与手动分割结果相当。

相似文献

引用本文的文献

1
Artificial Intelligence in Head and Neck Surgery.人工智能在头颈部外科中的应用。
Otolaryngol Clin North Am. 2024 Oct;57(5):803-820. doi: 10.1016/j.otc.2024.05.001. Epub 2024 Jun 22.

本文引用的文献

3
Preserving differential privacy in convolutional deep belief networks.在卷积深度信念网络中保持差分隐私
Mach Learn. 2017 Oct;106(9-10):1681-1704. doi: 10.1007/s10994-017-5656-2. Epub 2017 Jul 13.
6
Focal Loss for Dense Object Detection.用于密集目标检测的焦散损失
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. doi: 10.1109/TPAMI.2018.2858826. Epub 2018 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验