基于深度学习的危及器官自动分割对鼻咽癌和直肠癌的剂量学影响。

The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer.

机构信息

Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.

出版信息

Radiat Oncol. 2021 Jun 23;16(1):113. doi: 10.1186/s13014-021-01837-y.

Abstract

PURPOSE

To investigate the dosimetric impact of deep learning-based auto-segmentation of organs at risk (OARs) on nasopharyngeal and rectal cancer.

METHODS AND MATERIALS

Twenty patients, including ten nasopharyngeal carcinoma (NPC) patients and ten rectal cancer patients, who received radiotherapy in our department were enrolled in this study. Two deep learning-based auto-segmentation systems, including an in-house developed system (FD) and a commercial product (UIH), were used to generate two auto-segmented OARs sets (OAR_FD and OAR_UIH). Treatment plans based on auto-segmented OARs and following our clinical requirements were generated for each patient on each OARs sets (Plan_FD and Plan_UIH). Geometric metrics (Hausdorff distance (HD), mean distance to agreement (MDA), the Dice similarity coefficient (DICE) and the Jaccard index) were calculated for geometric evaluation. The dosimetric impact was evaluated by comparing Plan_FD and Plan_UIH to original clinically approved plans (Plan_Manual) with dose-volume metrics and 3D gamma analysis. Spearman's correlation analysis was performed to investigate the correlation between dosimetric difference and geometric metrics.

RESULTS

FD and UIH could provide similar geometric performance in parotids, temporal lobes, lens, and eyes (DICE, p > 0.05). OAR_FD had better geometric performance in the optic nerves, oral cavity, larynx, and femoral heads (DICE, p < 0.05). OAR_UIH had better geometric performance in the bladder (DICE, p < 0.05). In dosimetric analysis, both Plan_FD and Plan_UIH had nonsignificant dosimetric differences compared to Plan_Manual for most PTV and OARs dose-volume metrics. The only significant dosimetric difference was the max dose of the left temporal lobe for Plan_FD vs. Plan_Manual (p = 0.05). Only one significant correlation was found between the mean dose of the femoral head and its HD index (R = 0.4, p = 0.01), there is no OARs showed strong correlation between its dosimetric difference and all of four geometric metrics.

CONCLUSIONS

Deep learning-based OARs auto-segmentation for NPC and rectal cancer has a nonsignificant impact on most PTV and OARs dose-volume metrics. Correlations between the auto-segmentation geometric metric and dosimetric difference were not observed for most OARs.

摘要

目的

研究基于深度学习的危及器官(OAR)自动分割对鼻咽癌和直肠癌的剂量学影响。

方法与材料

本研究纳入了在我科接受放疗的 20 名患者,包括 10 名鼻咽癌(NPC)患者和 10 名直肠癌患者。使用两个基于深度学习的自动分割系统,包括一个内部开发的系统(FD)和一个商业产品(UIH),生成两组自动分割的 OAR 集(OAR_FD 和 OAR_UIH)。基于自动分割的 OAR 并根据我们的临床要求,为每个患者的每个 OAR 集(Plan_FD 和 Plan_UIH)生成治疗计划。通过剂量-体积指标和 3D 伽马分析,将 Plan_FD 和 Plan_UIH 与原始临床批准的计划(Plan_Manual)进行比较,评估剂量学影响。使用 Spearman 相关分析研究剂量学差异与几何指标之间的相关性。

结果

FD 和 UIH 在腮腺、颞叶、晶状体和眼睛方面提供了相似的几何性能(DICE,p>0.05)。OAR_FD 在视神经、口腔、喉咙和股骨头方面具有更好的几何性能(DICE,p<0.05)。OAR_UIH 在膀胱方面具有更好的几何性能(DICE,p<0.05)。在剂量学分析中,与 Plan_Manual 相比,Plan_FD 和 Plan_UIH 对于大多数 PTV 和 OAR 剂量-体积指标均无显著剂量学差异。唯一显著的剂量学差异是 Plan_FD 与 Plan_Manual 相比左颞叶的最大剂量(p=0.05)。仅发现股骨头的平均剂量与其 HD 指数之间存在显著相关性(R=0.4,p=0.01),大多数 OAR 未发现其剂量学差异与所有四个几何指标之间存在强相关性。

结论

基于深度学习的 NPC 和直肠癌 OAR 自动分割对大多数 PTV 和 OAR 剂量-体积指标的影响不大。大多数 OAR 的自动分割几何指标与剂量学差异之间没有相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索