Suppr超能文献

一种基于机器学习的高效方法,用于筛选遗传性血色素沉着症风险个体。

An efficient machine learning-based approach for screening individuals at risk of hereditary haemochromatosis.

机构信息

Megeno S.A, Esch-sur-Alzette, Luxembourg.

University of Luxembourg, Esch-sur-Alzette, Luxembourg.

出版信息

Sci Rep. 2020 Nov 26;10(1):20613. doi: 10.1038/s41598-020-77367-6.

Abstract

Hereditary haemochromatosis (HH) is an autosomal recessive disease, where HFE C282Y homozygosity accounts for 80-85% of clinical cases among the Caucasian population. HH is characterised by the accumulation of iron, which, if untreated, can lead to the development of liver cirrhosis and liver cancer. Since iron overload is preventable and treatable if diagnosed early, high-risk individuals can be identified through effective screening employing artificial intelligence-based approaches. However, such tools expose novel challenges associated with the handling and integration of large heterogeneous datasets. We have developed an efficient computational model to screen individuals for HH using the family study data of the Hemochromatosis and Iron Overload Screening (HEIRS) cohort. This dataset, consisting of 254 cases and 701 controls, contains variables extracted from questionnaires and laboratory blood tests. The final model was trained on an extreme gradient boosting classifier using the most relevant risk factors: HFE C282Y homozygosity, age, mean corpuscular volume, iron level, serum ferritin level, transferrin saturation, and unsaturated iron-binding capacity. Hyperparameter optimisation was carried out with multiple runs, resulting in 0.94 ± 0.02 area under the receiving operating characteristic curve (AUCROC) for tenfold stratified cross-validation, demonstrating its outperformance when compared to the iron overload screening (IRON) tool.

摘要

遗传性血色素沉着症(HH)是一种常染色体隐性疾病,其中 HFE C282Y 纯合子占白种人群中 80-85%的临床病例。HH 的特征是铁的积累,如果不治疗,可能导致肝硬化和肝癌的发展。由于铁过载是可以预防和治疗的,如果早期诊断,高危人群可以通过基于人工智能的有效筛查方法来识别。然而,这些工具暴露了与处理和整合大型异质数据集相关的新挑战。我们已经开发了一种有效的计算模型,用于使用 Hemochromatosis and Iron Overload Screening (HEIRS) 队列的家族研究数据对 HH 进行筛查。该数据集包含 254 例病例和 701 例对照,包含从问卷和实验室血液测试中提取的变量。最终模型是使用最相关的风险因素:HFE C282Y 纯合子、年龄、平均红细胞体积、铁水平、血清铁蛋白水平、转铁饱和度和未饱和铁结合能力,在极端梯度提升分类器上进行训练的。通过多次运行进行了超参数优化,在 10 倍分层交叉验证中获得了 0.94±0.02 的接收者操作特征曲线下面积(AUCROC),表明与铁过载筛查(IRON)工具相比,其表现出色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d5d/7691515/05261919e414/41598_2020_77367_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验