Suppr超能文献

用于整合生物学和医学数据的机器学习:原理、实践与机遇

Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities.

作者信息

Zitnik Marinka, Nguyen Francis, Wang Bo, Leskovec Jure, Goldenberg Anna, Hoffman Michael M

机构信息

Department of Computer Science, Stanford University, Stanford, CA, USA.

Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.

出版信息

Inf Fusion. 2019 Oct;50:71-91. doi: 10.1016/j.inffus.2018.09.012. Epub 2018 Sep 21.

Abstract

New technologies have enabled the investigation of biology and human health at an unprecedented scale and in multiple dimensions. These dimensions include myriad properties describing genome, epigenome, transcriptome, microbiome, phenotype, and lifestyle. No single data type, however, can capture the complexity of all the factors relevant to understanding a phenomenon such as a disease. Integrative methods that combine data from multiple technologies have thus emerged as critical statistical and computational approaches. The key challenge in developing such approaches is the identification of effective models to provide a comprehensive and relevant systems view. An ideal method can answer a biological or medical question, identifying important features and predicting outcomes, by harnessing heterogeneous data across several dimensions of biological variation. In this Review, we describe the principles of data integration and discuss current methods and available implementations. We provide examples of successful data integration in biology and medicine. Finally, we discuss current challenges in biomedical integrative methods and our perspective on the future development of the field.

摘要

新技术使人们能够以前所未有的规模和多维度方式研究生物学和人类健康。这些维度包括描述基因组、表观基因组、转录组、微生物组、表型和生活方式的无数特性。然而,没有单一的数据类型能够捕捉与理解诸如疾病等现象相关的所有因素的复杂性。因此,结合多种技术数据的整合方法已成为关键的统计和计算方法。开发此类方法的关键挑战在于识别有效的模型,以提供全面且相关的系统观点。一种理想的方法可以通过利用生物变异多个维度的异构数据来回答生物学或医学问题,识别重要特征并预测结果。在本综述中,我们描述了数据整合的原则,并讨论了当前的方法和可用的实现方式。我们提供了生物学和医学中成功数据整合的示例。最后,我们讨论了生物医学整合方法当前面临的挑战以及我们对该领域未来发展的看法。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Machine learning: its challenges and opportunities in plant system biology.机器学习:在植物系统生物学中的挑战与机遇。
Appl Microbiol Biotechnol. 2022 May;106(9-10):3507-3530. doi: 10.1007/s00253-022-11963-6. Epub 2022 May 16.
8
Systems biology of asthma and allergic diseases: a multiscale approach.哮喘与过敏性疾病的系统生物学:一种多尺度方法
J Allergy Clin Immunol. 2015 Jan;135(1):31-42. doi: 10.1016/j.jaci.2014.10.015. Epub 2014 Nov 21.
9

引用本文的文献

1
Artificial Intelligence and Chromothripsis.人工智能与染色体碎裂
Methods Mol Biol. 2025;2968:281-289. doi: 10.1007/978-1-0716-4750-9_16.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验