Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China.
Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ninghai, 315604, China.
Mol Biol Rep. 2020 Dec;47(12):9579-9593. doi: 10.1007/s11033-020-06018-w. Epub 2020 Nov 27.
High ammonia can inhibit the survival and growth, and even cause mortality of razor clam (S. constricta). The accumulation of ammonia to lethal concentrations in some invertebrates may be partially prevented by converting some of the ammonia into glutamine (Gln). Glutamine dehydrogenase (GDH) and glutamine synthetase (GS) have been widely implicated a central role in response to ammonia stress. However, the molecular and physiological response of GDH and GS to ammonia alterations has not yet been determined in clams. To investigate the possible participatory role of GDH and GS genes in altered ammonia conditions, we have cloned their gene sequences and examined the mRNA expression and western blotting under ammonia exposure in S. constricta (ScGDH and ScGS), and detected the levels of GS and GDH, and the content of glutamate (Glu) and Gln. The full-length cDNA of ScGDH was 3924 bp, with a 1629 bp open reading frame (ORF) encoding a 542 amino-acid polypeptide. The complete cDNA sequence for ScGS had 2739 bp with an ORF of 1110 bp encoding 369 amino acids. To investigate ammonia detoxification strategies, the clams were exposed to ammonia for 96 h at four different concentrations (0, 100, 140, and 180 mg/L). Exposure to ammonia resulted in a significant increase of glutamate concentration and Gln in the haemocytes. GDH activity, GDH relative mRNA and protein expression, GS activity, GS relative mRNA and protein expression increased significantly and showed a pronounced time and dosage interaction in the liver. The results suggested that the protective strategies of Gln formation existed in S. constricta, which could convert ammonia to non- or less toxic nitrogenous compounds on the exposure of ammonia. Glutamate content in the haemocytes increased significantly, which is to ensure sufficient Glu to meet the needs for GS to catalyze the conversion of ammonia to Gln. We proposed that the induction of Glu synthesis-related genes and the subsequent formation of the active protein occurred in preparation for the increased capacity of the body to convert ammonia, into Gln. The results of this study suggested that GDH and GS play an important role in the synthesis of Gln, emphasizing, the protective strategies of Gln formation in S. constricta convert ammonia to nontoxic or less toxic nitrogenous compounds upon exposure to ammonia.
高浓度的氨会抑制刀额新对虾(S. constricta)的生存和生长,甚至导致其死亡。一些无脊椎动物可以通过将部分氨转化为谷氨酰胺(Gln)来部分防止氨积累到致死浓度。谷氨酰胺脱氢酶(GDH)和谷氨酰胺合成酶(GS)在应对氨胁迫方面被广泛认为具有核心作用。然而,在贝类中,GDH 和 GS 对氨变化的分子和生理反应尚未确定。为了研究 GDH 和 GS 基因在改变氨条件下可能发挥的作用,我们克隆了它们的基因序列,并在 S. constricta(ScGDH 和 ScGS)暴露于氨的情况下检测了它们的 mRNA 表达和 Western blot,同时检测了 GS 和 GDH 的水平、谷氨酸(Glu)和 Gln 的含量。ScGDH 的全长 cDNA 为 3924bp,具有 1629bp 的开放阅读框(ORF),编码 542 个氨基酸的多肽。ScGS 的完整 cDNA 序列为 2739bp,ORF 为 1110bp,编码 369 个氨基酸。为了研究氨解毒策略,将刀额新对虾暴露于 0、100、140 和 180mg/L 四种不同浓度的氨中 96h。暴露于氨会导致血淋巴细胞中谷氨酸浓度和 Gln 显著增加。肝组织中 GDH 活性、GDH 相对 mRNA 和蛋白表达、GS 活性、GS 相对 mRNA 和蛋白表达显著增加,并表现出明显的时间和剂量相互作用。结果表明,刀额新对虾存在 Gln 形成的保护策略,可以在暴露于氨时将氨转化为非毒性或毒性较小的含氮化合物。血淋巴细胞中谷氨酸含量显著增加,以确保有足够的 Glu 满足 GS 催化氨转化为 Gln 的需要。我们提出,谷氨酸合成相关基因的诱导和随后活性蛋白的形成发生在为增加身体将氨转化为 Gln 的能力做准备。本研究结果表明,GDH 和 GS 在 Gln 合成中发挥重要作用,强调了刀额新对虾 Gln 形成的保护策略可以将氨转化为非毒性或毒性较小的含氮化合物。