Suppr超能文献

膜纳米域内稳态在丙泊酚麻醉期间作为剂量和温度的函数。

Membrane nanodomains homeostasis during propofol anesthesia as function of dosage and temperature.

机构信息

Dept. of Physics, University at Buffalo, SUNY, Buffalo, NY 14260-1500, USA.

Dept. of Physics, University at Buffalo, SUNY, Buffalo, NY 14260-1500, USA.

出版信息

Biochim Biophys Acta Biomembr. 2021 Feb 1;1863(2):183511. doi: 10.1016/j.bbamem.2020.183511. Epub 2020 Nov 25.

Abstract

Some anesthetics bind and potentiate γ-aminobutyric-acid-type receptors, but no universal mechanism for general anesthesia is known. Furthermore, often encountered complications such as anesthesia induced amnesia are not understood. General anesthetics are hydrophobic molecules easily dissolving into lipid bilayers. Recently, it was shown that general anesthetics perturb phase separation in vesicles extracted from fixed cells. Unclear is whether under physiological conditions general anesthetics induce perturbation of the lipid bilayer, and whether this contributes to the transient loss of consciousness or anesthesia side effects. Here we show that propofol perturbs lipid nanodomains in the outer and inner leaflet of the plasma membrane in intact cells, affecting membrane nanodomains in a concentration dependent manner: 1 μM to 5 μM propofol destabilize nanodomains; however, propofol concentrations higher than 5 μM stabilize nanodomains with time. Stabilization occurs only at physiological temperature and in intact cells. This process requires ARP2/3 mediated actin nucleation and Myosin II activity. The rate of nanodomain stabilization is potentiated by GABA receptor activity. Our results show that active nanodomain homeostasis counteracts the initial disruption causing large changes in cortical actin. SIGNIFICANCE STATEMENT: General anesthesia is a routine medical procedure with few complications, yet a small number of patients experience side-effects that persist for weeks and months. Very young children are at risk for effects on brain development. Elderly patients often exhibit subsequent amnesia. Here, we show that the general anesthetic propofol perturbs the ultrastructure of the lipid bilayer of the cell membrane in intact cells. Initially propofol destabilized lipid nanodomains. However, with increasing incubation time and propofol concentration, the effect is reversed and nanodomains are further stabilized. We show that this stabilization is caused by the activation of the actin cortex under the membrane. These perturbations of membrane bilayer and cortical actin may explain how propofol affects neuronal plasticity at synapses.

摘要

一些麻醉剂与γ-氨基丁酸型受体结合并增强其活性,但目前尚不清楚全身麻醉的通用机制。此外,经常遇到的并发症,如麻醉诱导的健忘症,目前仍不清楚其原因。全身麻醉剂是疏水分子,很容易溶解在脂质双层中。最近的研究表明,全身麻醉剂会扰乱从固定细胞中提取的囊泡中的相分离。目前尚不清楚在生理条件下,全身麻醉剂是否会引起脂质双层的扰动,以及这是否会导致意识短暂丧失或麻醉副作用。在这里,我们表明,异丙酚会扰乱完整细胞的质膜内外叶的脂质纳米域,以浓度依赖的方式影响膜纳米域:1μM 到 5μM 的异丙酚会使纳米域不稳定;然而,异丙酚浓度高于 5μM 时,纳米域会随着时间的推移而稳定。这种稳定仅在生理温度和完整细胞中发生。这个过程需要 ARP2/3 介导的肌动蛋白成核和肌球蛋白 II 活性。GABA 受体活性增强了纳米域稳定的速度。我们的结果表明,活跃的纳米域动态平衡抵消了导致皮质肌动蛋白发生大变化的初始破坏。意义:全身麻醉是一种常规的医疗程序,并发症很少,但少数患者会出现持续数周和数月的副作用。非常年幼的儿童面临着对大脑发育产生影响的风险。老年患者常伴有随后的健忘症。在这里,我们表明,全身麻醉剂异丙酚会扰乱完整细胞的细胞膜的脂质双层超微结构。最初,异丙酚会使脂质纳米域不稳定。然而,随着孵育时间和异丙酚浓度的增加,这种作用被逆转,纳米域进一步稳定。我们表明,这种稳定是由膜下肌动蛋白皮质的激活引起的。这些对膜双层和皮质肌动蛋白的扰动可能解释了异丙酚如何影响突触处的神经元可塑性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验