Suppr超能文献

智慧城市的智能解决方案:利用高分辨率卫星图像和机载 LiDAR 数据在加拿大纽芬兰省圣约翰市进行城市湿地测绘。

Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne LiDAR data in the City of St. John's, NL, Canada.

机构信息

C-CORE, 1 Morrissey Rd, St. John's, NL A1B 3X5, Canada; Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.

C-CORE, 1 Morrissey Rd, St. John's, NL A1B 3X5, Canada.

出版信息

J Environ Manage. 2021 Feb 15;280:111676. doi: 10.1016/j.jenvman.2020.111676. Epub 2020 Nov 24.

Abstract

Thanks to increasing urban development, it has become important for municipalities to understand how ecological processes function. In particular, urban wetlands are vital habitats for the people and the animals living amongst them. This is because wetlands provide great services, including water filtration, flood and drought mitigation, and recreational spaces. As such, several recent urban development plans are currently needed to monitor these invaluable ecosystems using time- and cost-efficient approaches. Accordingly, this study is designed to provide an initial response to the need of wetland mapping in the City of St. John's, Newfoundland and Labrador (NL), Canada. Specifically, we produce the first high-resolution wetland map of the City of St. John's using advanced machine learning algorithms, very high-resolution satellite imagery, and airborne LiDAR. An object-based random forest algorithm is applied to features extracted from WorldView-4, GeoEye-1, and LiDAR data to characterize five wetland classes, namely bog, fen, marsh, swamp, and open water, within an urban area. An overall accuracy of 91.12% is obtained for discriminating different wetland types and wetland surface water flow connectivity is also produced using LiDAR data. The resulting wetland classification map and the water surface flow map can help elucidate a greater understanding of the way in which wetlands are connected to the city's landscape and ultimately aid to improve wetland-related conservation and management decisions within the City of St. John's.

摘要

由于城市发展的不断推进,了解生态过程的运作方式对市政当局来说变得至关重要。特别是,城市湿地对于生活在其中的人和动物来说是至关重要的栖息地。这是因为湿地提供了许多重要的服务,包括水过滤、洪水和干旱缓解以及娱乐空间。因此,目前需要一些最近的城市发展计划来使用省时、省钱的方法监测这些宝贵的生态系统。因此,本研究旨在为加拿大纽芬兰和拉布拉多省圣约翰市(NL)的湿地测绘需求提供初步回应。具体来说,我们使用先进的机器学习算法、超高分辨率卫星图像和机载 LiDAR 首次为圣约翰市制作了高分辨率的湿地地图。基于对象的随机森林算法应用于从 WorldView-4、GeoEye-1 和 LiDAR 数据中提取的特征,以在城市地区内对五个湿地类别(即沼泽、泥沼、沼泽、沼泽和开阔水域)进行特征描述。不同湿地类型的区分准确率达到 91.12%,并使用 LiDAR 数据生成了湿地地表水流动连通性。生成的湿地分类图和水面流动图有助于更好地了解湿地与城市景观的连接方式,并最终有助于改善圣约翰市的湿地相关保护和管理决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验