Department of Surgery, Methodist Health System, 2805 E President George Bush Hwy, Dallas, Richardson, TX, 75082, USA.
Department of Surgery, Medical City Arlington, Arlington, TX, USA.
World J Surg. 2021 Mar;45(3):865-872. doi: 10.1007/s00268-020-05861-z. Epub 2020 Nov 27.
BACKGROUND/OBJECTIVE: Quick optimization and mastery of a new technique is an important part of procedural medicine, especially in the field of minimally invasive surgery. Complex surgeries such as robotic pancreaticoduodenectomies (RPD) and robotic distal pancreatectomies (RDP) have a steep learning curve; therefore, findings that can help expedite the burdensome learning process are extremely beneficial. This single-surgeon study aims to report the learning curves of RDP, RPD, and robotic Heller myotomy (RHM) and to review the results' implications for the current state of robotic hepatopancreaticobiliary (HPB) surgery.
This is a retrospective case series of a prospectively maintained database at a non-university tertiary care center. Total of 175 patients underwent either RDP, RPD, or RHM with the surgeon (DRJ) from January 2014 to January 2020.
Statistical significance of operating room time (ORT) was noted after 47 cases for RDP (p < 0.05), 51 cases for RPD (p < 0.0001), and 18 cases for RHM (p < 0.05). Mean ORT after the statistical mastery of the procedure for RDP, RPD, and RHM was 124, 232, 93 min, respectively. No statistical significance was noted for estimated blood loss or length of stay.
Robotic HPB procedures have significantly higher learning curves compared to non-HPB procedures, even for an experienced HPB surgeon with extensive laparoscopic experience. Our RPD curve, however, is quicker than the literature average. We suggest that this is because of the simultaneous implementation of HPB (RDP and RPD) and non-HPB robotic surgeries with a shorter learning curve-especially foregut procedures such as RHM-into an experienced surgeon's practice. This may accelerate the learning process without compromising patient safety and outcomes.
背景/目的:快速优化和掌握新技术是程序医学的重要组成部分,尤其是在微创外科领域。复杂手术,如机器人胰十二指肠切除术(RPD)和机器人胰体尾切除术(RDP),学习曲线陡峭;因此,能够帮助加快繁琐学习过程的发现是非常有益的。本单外科医生研究旨在报告 RDP、RPD 和机器人 Heller 肌切开术(RHM)的学习曲线,并回顾结果对当前机器人肝胆胰(HPB)手术状态的影响。
这是一家非大学三级保健中心前瞻性维护数据库的回顾性病例系列研究。共有 175 名患者于 2014 年 1 月至 2020 年 1 月期间由外科医生(DRJ)行 RDP、RPD 或 RHM。
RDP(p<0.05)、RPD(p<0.0001)和 RHM(p<0.05)的病例数分别为 47、51 和 18 例时,手术时间(ORT)具有统计学意义。RDP、RPD 和 RHM 术后统计掌握手术程序的平均 ORT 分别为 124、232 和 93 分钟。估计出血量或住院时间无统计学意义。
与非 HPB 手术相比,机器人 HPB 手术的学习曲线明显更高,即使对于具有广泛腹腔镜经验的经验丰富的 HPB 外科医生也是如此。然而,我们的 RPD 曲线比文献平均值更快。我们认为这是因为同时实施了 HPB(RDP 和 RPD)和非 HPB 机器人手术,具有较短的学习曲线,尤其是对于经验丰富的外科医生来说,如 RHM 等前肠手术。这可能会加速学习过程,而不会影响患者的安全和结果。