Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
Neurochem Int. 2021 Jan;142:104925. doi: 10.1016/j.neuint.2020.104925. Epub 2020 Nov 26.
Microglial cells interact with all components of the central nervous system (CNS) and are increasingly recognized to play essential roles during brain development, homeostasis and disease pathologies. Functions of microglia include maintaining tissue integrity, clearing cellular debris and dead neurons through the process of phagocytosis, and providing tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. Changes of microglial ionic homeostasis (Na, Ca, K, H, Cl) are important for microglial activation, including proliferation, migration, cytokine release and reactive oxygen species production, etc. These are mediated by ion channels and ion transporters in microglial cells. Here, we review the current knowledge about the role of major microglial ion channels and transporters, including several types of Ca channels (store-operated Ca entry (SOCE) channels, transient receptor potential (TRP) channels and voltage-gated Ca channels (VGCCs)) and Na channels (voltage-gated Na channels (Nav) and acid-sensing ion channels (ASICs)), K channels (inward rectifier K channels (K), voltage-gated K channels (K) and calcium-activated K channels (K)), proton channels (voltage-gated proton channel (Hv1)), and Cl channels (volume (or swelling)-regulated Cl channels (VRCCs) and chloride intracellular channels (CLICs)). In addition, ion transporter proteins such as Na/Ca exchanger (NCX), Na-K-Cl cotransporter (NKCC1), and Na/H exchanger (NHE1) are also involved in microglial function in physiology and brain diseases. We discussed microglial activation and neuroinflammation in relation to the ion channel/transporter stimulation under brain disease conditions and therapeutic aspects of targeting microglial ion channels/transporters for neurodegenerative disease, ischemic stroke, traumatic brain injury and neuropathic pain.
小胶质细胞与中枢神经系统 (CNS) 的所有组成部分相互作用,并且越来越被认为在大脑发育、稳态和疾病病理中发挥重要作用。小胶质细胞的功能包括通过吞噬作用维持组织完整性、清除细胞碎片和死神经元,并通过释放抗炎细胞因子和神经营养因子提供组织修复。小胶质细胞离子稳态(Na、Ca、K、H、Cl)的变化对于小胶质细胞的激活很重要,包括增殖、迁移、细胞因子释放和活性氧物质产生等。这些是由小胶质细胞中的离子通道和转运蛋白介导的。在这里,我们综述了主要小胶质细胞离子通道和转运体的作用的最新知识,包括几种 Ca 通道(储存操纵的 Ca 内流 (SOCE) 通道、瞬时受体电位 (TRP) 通道和电压门控 Ca 通道 (VGCCs)) 和 Na 通道(电压门控 Na 通道 (Nav) 和酸感应离子通道 (ASICs))、K 通道(内向整流 K 通道 (K)、电压门控 K 通道 (K) 和钙激活的 K 通道 (K))、质子通道(电压门控质子通道 (Hv1))和 Cl 通道(体积(或肿胀)调节的 Cl 通道 (VRCCs) 和氯离子细胞内通道 (CLICs))。此外,离子转运蛋白,如 Na/Ca 交换器 (NCX)、Na-K-Cl 共转运体 (NKCC1) 和 Na/H 交换器 (NHE1),也参与生理和脑疾病中小胶质细胞的功能。我们讨论了在脑疾病条件下离子通道/转运体刺激与小胶质细胞激活和神经炎症的关系,以及针对神经退行性疾病、缺血性中风、创伤性脑损伤和神经病理性疼痛的小胶质细胞离子通道/转运体的治疗方法。