Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Neuroimage. 2021 Feb 1;226:117594. doi: 10.1016/j.neuroimage.2020.117594. Epub 2020 Nov 26.
The androgen receptor (AR) is known for masculinization of behavior and brain. To better understand the role that AR plays, mice bearing humanized Ar genes with varying lengths of a polymorphic N-terminal glutamine (Q) tract were created (Albertelli et al., 2006). The length of the Q tract is inversely proporitional to AR activity. Biological studies of the Q tract length may also provide a window into potential AR contributions to sex-biases in disease risk. Here we take a multi-pronged approach to characterizing AR signaling effects on brain and behavior in mice using the humanized Ar Q tract model. We first map effects of Q tract length on regional brain anatomy, and consider if these are modified by gonadal sex. We then test the notion that spatial patterns of anatomical variation related to Q tract length could be organized by intrinsic spatiotemporal patterning of AR gene expression in the mouse brain. Finally, we test influences of Q tract length on four behavioral tests.Altering Q tract length led to neuroanatomical differences in a non-linear dosage-dependent fashion. Gene expression analyses indicated that adult neu- roanatomical changes due to Q tract length are only associated with neurode- velopment (as opposed to adulthood). No significant effect of Q tract length was found on the behavior of the three mouse models. These results indicate that AR activity differentially mediates neuroanatomy and behavior, that AR activity alone does not mediate sex differences, and that neurodevelopmen- tal processes are associated with spatial patterns of volume changes due to Q tract length in adulthood. They also indicate that androgen sensitivity in adulthood is not likely to lead to autism-related behaviors or neuroanatomy, although neurodevelopmental processes may play a role earlier. Further study into sex differences, development, other behaviors, and other sex-specific mech- anisms are needed to better understand AR sensitivity, neurodevelopmental disorders, and the sex difference in their prevalence.
雄激素受体 (AR) 负责行为和大脑的男性化。为了更好地了解 AR 所起的作用,研究人员构建了携带不同长度多态性 N 端谷氨酰胺 (Q) 重复序列的人源化 Ar 基因的小鼠 (Albertelli 等人,2006 年)。Q 重复序列的长度与 AR 活性成反比。对 Q 重复序列长度的生物学研究也可能为 AR 对疾病风险的性别偏倚的潜在贡献提供一个窗口。在这里,我们使用人源化 Ar Q 重复序列模型,采用多管齐下的方法来描述 AR 信号对大脑和行为的影响。我们首先研究 Q 重复序列长度对大脑区域解剖结构的影响,并考虑这些影响是否受性腺性别修饰。然后,我们验证了这样一个假设,即与 Q 重复序列长度相关的解剖结构的空间变化模式可能由 AR 基因在小鼠大脑中的内在时空表达模式组织。最后,我们检验了 Q 重复序列长度对四项行为测试的影响。改变 Q 重复序列长度会导致非线性剂量依赖的神经解剖差异。基因表达分析表明,由于 Q 重复序列长度引起的成年神经解剖变化仅与神经发育(而非成年)有关。Q 重复序列长度对三种小鼠模型的行为均无显著影响。这些结果表明,AR 活性以不同的方式调节神经解剖和行为,AR 活性本身并不能介导性别差异,并且神经发育过程与由于 Q 重复序列长度引起的体积变化的空间模式有关。它们还表明,成年期的雄激素敏感性不太可能导致与自闭症相关的行为或神经解剖,尽管神经发育过程可能在早期发挥作用。需要进一步研究性别差异、发育、其他行为和其他性别特异性机制,以更好地理解 AR 敏感性、神经发育障碍以及它们在患病率方面的性别差异。