Suppr超能文献

一种准确估计寿命大脑轨迹的方法,可区分纵向和队列效应。

A recipe for accurate estimation of lifespan brain trajectories, distinguishing longitudinal and cohort effects.

机构信息

Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway.

Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway.

出版信息

Neuroimage. 2021 Feb 1;226:117596. doi: 10.1016/j.neuroimage.2020.117596. Epub 2020 Nov 26.

Abstract

We address the problem of estimating how different parts of the brain develop and change throughout the lifespan, and how these trajectories are affected by genetic and environmental factors. Estimation of these lifespan trajectories is statistically challenging, since their shapes are typically highly nonlinear, and although true change can only be quantified by longitudinal examinations, as follow-up intervals in neuroimaging studies typically cover less than 10% of the lifespan, use of cross-sectional information is necessary. Linear mixed models (LMMs) and structural equation models (SEMs) commonly used in longitudinal analysis rely on assumptions which are typically not met with lifespan data, in particular when the data consist of observations combined from multiple studies. While LMMs require a priori specification of a polynomial functional form, SEMs do not easily handle data with unstructured time intervals between measurements. Generalized additive mixed models (GAMMs) offer an attractive alternative, and in this paper we propose various ways of formulating GAMMs for estimation of lifespan trajectories of 12 brain regions, using a large longitudinal dataset and realistic simulation experiments. We show that GAMMs are able to more accurately fit lifespan trajectories, distinguish longitudinal and cross-sectional effects, and estimate effects of genetic and environmental exposures. Finally, we discuss and contrast questions related to lifespan research which strictly require repeated measures data and questions which can be answered with a single measurement per participant, and in the latter case, which simplifying assumptions that need to be made. The examples are accompanied with R code, providing a tutorial for researchers interested in using GAMMs.

摘要

我们解决了估计大脑不同部分在整个生命周期中如何发育和变化的问题,以及这些轨迹如何受到遗传和环境因素的影响。由于这些轨迹的形状通常是非线性的,因此对这些轨迹进行估计在统计学上具有挑战性,尽管只有通过纵向检查才能准确量化真正的变化,但由于神经影像学研究的随访间隔通常不到寿命的 10%,因此必须使用横断面信息。线性混合模型 (LMM) 和结构方程模型 (SEM) 是纵向分析中常用的方法,这些方法通常不符合寿命数据的假设,特别是当数据由来自多个研究的观察结果组合而成时。虽然 LMM 需要先验指定多项式函数形式,但 SEM 不易处理测量之间具有非结构化时间间隔的数据。广义加性混合模型 (GAMM) 提供了一个有吸引力的替代方案,在本文中,我们使用大型纵向数据集和现实的模拟实验,提出了各种用于估计 12 个大脑区域寿命轨迹的 GAMM 建模方法。我们表明,GAMM 能够更准确地拟合寿命轨迹,区分纵向和横断面效应,并估计遗传和环境暴露的影响。最后,我们讨论并对比了严格需要重复测量数据的寿命研究问题和每个参与者只需进行一次测量就可以回答的问题,在后一种情况下,需要进行哪些简化假设。这些示例附有 R 代码,为有兴趣使用 GAMM 的研究人员提供了一个教程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验