BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
Department of Health Policy and Management, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
Value Health. 2020 Dec;23(12):1534-1542. doi: 10.1016/j.jval.2020.06.013. Epub 2020 Oct 3.
The ambitious goals of the US Ending the HIV Epidemic initiative will require a targeted, context-specific public health response. Model-based economic evaluation provides useful guidance for decision making while characterizing decision uncertainty. We aim to quantify the value of eliminating uncertainty about different parameters in selecting combination implementation strategies to reduce the public health burden of HIV/AIDS in 6 US cities and identify future data collection priorities.
We used a dynamic compartmental HIV transmission model developed for 6 US cities to evaluate the cost-effectiveness of a range of combination implementation strategies. Using a metamodeling approach with nonparametric and deep learning methods, we calculated the expected value of perfect information, representing the maximum value of further research to eliminate decision uncertainty, and the expected value of partial perfect information for key groups of parameters that would be collected together in practice.
The population expected value of perfect information ranged from $59 683 (Miami) to $54 108 679 (Los Angeles). The rank ordering of expected value of partial perfect information on key groups of parameters were largely consistent across cities and highest for parameters pertaining to HIV risk behaviors, probability of HIV transmission, health service engagement, HIV-related mortality, health utility weights, and healthcare costs. Los Angeles was an exception, where parameters on retention in pre-exposure prophylaxis ranked highest in contributing to decision uncertainty.
Funding additional data collection on HIV/AIDS may be warranted in Baltimore, Los Angeles, and New York City. Value of information analysis should be embedded into decision-making processes on funding future research and public health intervention.
美国终结艾滋病流行倡议的宏伟目标需要有针对性的、特定背景的公共卫生应对措施。基于模型的经济评估在描述决策不确定性的同时,为决策提供了有用的指导。我们旨在量化消除选择联合实施策略以减轻美国 6 个城市艾滋病毒/艾滋病公共卫生负担的不同参数不确定性的价值,并确定未来的数据收集重点。
我们使用为 6 个美国城市开发的动态分区 HIV 传播模型来评估一系列联合实施策略的成本效益。我们使用基于元模型的方法(非参数和深度学习方法),计算了完全信息的期望价值,代表了进一步研究以消除决策不确定性的最大价值,以及在实践中一起收集的关键参数组的部分完全信息的期望价值。
人群完全信息的期望价值范围从 59683 美元(迈阿密)到 54108679 美元(洛杉矶)。在关键参数组的部分完全信息期望价值的排序在各个城市之间基本一致,并且与 HIV 风险行为、HIV 传播概率、卫生服务参与、HIV 相关死亡率、健康效用权重和医疗保健成本等参数相关的价值最高。洛杉矶是一个例外,保留在暴露前预防中的参数在导致决策不确定性方面排名最高。
巴尔的摩、洛杉矶和纽约市可能需要为艾滋病毒/艾滋病的额外数据收集提供资金。应将信息价值分析嵌入到为未来研究和公共卫生干预提供资金的决策过程中。