Faculty of Pharmacy, Federal University of Minas Gerais, Pampulha, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro, 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil.
Biomed Pharmacother. 2021 Jan;133:110948. doi: 10.1016/j.biopha.2020.110948. Epub 2020 Nov 26.
Retinal ischemia, one of the most common cause of visual loss, is associated with blood flow inadequacy and subsequent tissue injury. In this setting, some treatments that can counteract glutamate increase, arouse interest in ischemic pathogenesis. Ketamine, a potent N-methyl-d-aspartate (NMDA) receptor antagonist, provides a neuroprotective pathway via decreasing the excitotoxicity triggered by excess glutamatergic. Thus, the goal of this study was to evaluate the safety of intravitreal use of ketamine and their potential protective effects on retinal cells in retinal ischemia/reperfusion model. Initially, ketamine toxicity was evaluated by cytotoxicity assay and Hen's egg chorioallantoic membrane (HET-CAM) method. Afterward, some ketamine concentrations were tested in rat's eyes to verify the safety of the intravitreal use. To investigate the neuroprotective effect on retinal, a single intravitreal injection of ketamine in concentrations of 0.059 mmol.L and 0.118 mmol.L was performed one day before the retinal injury by ischemia/reperfusion model. After 7 and 15 days, the retina activity was evaluated by electroretinogram (ERG) records and, lastly, by morphological analyzes. Cytotoxicity assay reveals that the maximum ketamine concentration that could reach retinal pigmented epithelium cells is 0.353 mmol.L. HET-CAM assay showed that concentrations above 0.237 mmol.L are irritants to the eye. Thus, Ketamine in concentrations of 0.0237 mmol.L, 0.118 mmol.L-1, and 0.059 mmol.L-1 were selected for in vivo toxicity test. ERG records reveal a tendency of b-wave amplitude to decrease as the luminous intensity increased, in the group receiving ketamine at 0.237 mmol.L. Therefore, ketamine in concentrations at 0.059 mmol.L and 0.118 mmol.L-1 were chosen for the following tests. In the ischemia retinal degeneration model, pretreatment with ketamine was capable to promote a recovery of retinal electrophysiological function minimizing the ischemic effects. In histological analysis, the groups that received intravitreal ketamine showed a number of retinal cells significantly higher than the vehicle group. In TUNEL assay a reduction on TUNEL-positive cells was observed in all the layers for both concentrations which allow to affirm that ketamine contributes to reducing cell death in the retina. Transmission electron microscopy (TEM) reaffirms this finding. Ketamine intravitreal pretreatment showed reduced ultrastructural changes. Our findings demonstrate that ketamine is safe for intravitreal use in doses up to 0.118 mmol.L. They seem to be particularly efficient to protect the retina from ischemic injury.
视网膜缺血是视力丧失的最常见原因之一,与血流不足和随后的组织损伤有关。在这种情况下,一些可以对抗谷氨酸增加的治疗方法引起了对缺血性发病机制的兴趣。氯胺酮是一种有效的 N-甲基-D-天冬氨酸(NMDA)受体拮抗剂,通过减少过量谷氨酸能引发的兴奋性毒性提供神经保护途径。因此,本研究的目的是评估玻璃体内使用氯胺酮的安全性及其在视网膜缺血/再灌注模型中对视网膜细胞的潜在保护作用。首先,通过细胞毒性测定和鸡胚绒毛尿囊膜(HET-CAM)方法评估氯胺酮的毒性。之后,在大鼠眼中测试了一些氯胺酮浓度,以验证玻璃体内使用的安全性。为了研究对视网膜的神经保护作用,通过缺血/再灌注模型,在视网膜损伤前一天,单次玻璃体内注射 0.059 mmol.L 和 0.118 mmol.L 的氯胺酮。7 天和 15 天后,通过视网膜电图(ERG)记录和形态学分析评估视网膜活性。细胞毒性测定表明,氯胺酮可到达视网膜色素上皮细胞的最大浓度为 0.353 mmol.L。HET-CAM 测定表明,浓度高于 0.237 mmol.L 对眼睛有刺激性。因此,选择 0.0237 mmol.L、0.118 mmol.L-1 和 0.059 mmol.L-1 的氯胺酮浓度进行体内毒性试验。ERG 记录显示,在接受 0.237 mmol.L 氯胺酮的组中,随着光强度的增加,b 波幅度有降低的趋势。因此,选择 0.059 mmol.L 和 0.118 mmol.L-1 的氯胺酮浓度进行以下测试。在视网膜缺血变性模型中,氯胺酮预处理能够恢复视网膜的电生理功能,最大限度地减少缺血的影响。在组织学分析中,接受玻璃体内氯胺酮的组显示出比载体组更高数量的视网膜细胞。在 TUNEL 测定中,两种浓度的所有层都观察到 TUNEL 阳性细胞减少,这可以证实氯胺酮有助于减少视网膜细胞死亡。透射电子显微镜(TEM)再次证实了这一发现。氯胺酮玻璃体内预处理显示出减少的超微结构变化。我们的研究结果表明,氯胺酮在高达 0.118 mmol.L 的剂量下用于玻璃体内使用是安全的。它们似乎特别有效地保护视网膜免受缺血性损伤。