Suppr超能文献

通过持久同调对原子力显微镜图像进行颗粒分析。

Grain analysis of atomic force microscopy images via persistent homology.

作者信息

Duman Ali Nabi

机构信息

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

出版信息

Ultramicroscopy. 2021 Jan;220:113176. doi: 10.1016/j.ultramic.2020.113176. Epub 2020 Nov 21.

Abstract

Atomic force microscopy (AFM) is an established technique in nanoscale grain analysis due to its accuracy in producing 3-dimensional images. Even though height threshold and watershed algorithms are commonly used to determine the grain size and number of grains, they mostly require image processing that result in the change of topographical features of the surface that generates misleading conclusions. In this study, we use persistent homology, a method of representing topological features, to obtain more accurate information about the granular surfaces from unprocessed AFM images than the conventional methods. The method is also useful as a robust alternative to common parameters describing the topography of the AFM images. Most of these parameters such as arithmetic roughness and root-mean-squared roughness are represented by a single number which results in uncertainty in characterization of different surfaces. Persistent homology provides more precise summary about surface properties than a single parameter.

摘要

原子力显微镜(AFM)因其在生成三维图像方面的准确性,成为纳米级晶粒分析中的一项成熟技术。尽管高度阈值和分水岭算法通常用于确定晶粒尺寸和晶粒数量,但它们大多需要进行图像处理,这会导致表面地形特征发生变化,从而得出误导性结论。在本研究中,我们使用持久同调(一种表示拓扑特征的方法),从未经处理的AFM图像中获取比传统方法更准确的颗粒表面信息。该方法作为描述AFM图像地形的常见参数的可靠替代方法也很有用。这些参数中的大多数,如算术粗糙度和均方根粗糙度,都由一个单一数字表示,这导致在表征不同表面时存在不确定性。持久同调比单个参数能更精确地总结表面特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验