Suppr超能文献

通过实地观测和基于区域规模 AI 的建模,研究了印度地下水砷含量升高的发生情况、预测因子和危害。

Occurrence, predictors and hazards of elevated groundwater arsenic across India through field observations and regional-scale AI-based modeling.

机构信息

Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.

School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.

出版信息

Sci Total Environ. 2021 Mar 10;759:143511. doi: 10.1016/j.scitotenv.2020.143511. Epub 2020 Nov 13.

Abstract

Existence of wide spread elevated concentrations of groundwater arsenic (As) across South Asia, including India, has endangered a huge groundwater-based drinking water dependent population. Here, using high-spatial resolution As field-observations (~3 million groundwater sources) across India, we have delineated the regional-scale occurrence of elevated groundwater As (≥10 μg/L), along with the possible geologic-geomorphologic-hydrologic and human-sourced predictors that influence the spatial distribution of the contaminant. Using statistical and machine learning method, we also modeled the groundwater As concentrations probability at 1 Km resolution, along with probabilistic delineation of high As-hazard zones across India. The observed occurrence of groundwater As was found to be most strongly influenced by geology-tectonics, groundwater-fed irrigated area (%) and elevation. Pervasive As contamination is observed in major parts of the Himalayan mega-river Indus-Ganges-Brahmaputra basins, however it also occurs in several more-localized pockets, mostly related to ancient tectonic zones, igneous provinces, aquifers in modern delta and chalcophile mineralized regions. The model results suggest As-hazard potential in yet-undetected areas. Our model performed well in predicting groundwater arsenic, with accuracy: 82% and 84%; area under the curve (AUC): 0.89 and 0.88 for test data and validation datasets. An estimated ~90 million people across India are found to be exposed to high groundwater As from field-observed data, with the five states with highest hazard are West Bengal (28 million), Bihar (21 million), Uttar Pradesh (15 million), Assam (8.6 million) and Punjab (6 million). However it can be much more if the modeled hazard is considered (>250 million). Thus, our study provides a detailed, quantitative assessment of high groundwater As across India, with delineation of possible intrinsic influences and exogenous forcings. The predictive model is helpful in predicting As-hazard zones in the areas with limited measurements.

摘要

南亚(包括印度)广泛存在高浓度地下水砷(As),这使大量依赖地下水的饮用水人口面临危险。在这里,我们利用印度高空间分辨率的地下水砷实地观测数据(约 300 万个地下水水源),描绘了高浓度地下水砷(≥10μg/L)的区域分布情况,以及影响污染物空间分布的可能的地质-地貌-水文和人为来源预测因子。我们还使用统计和机器学习方法,以 1km 分辨率模拟了地下水砷浓度的概率,并对印度各地高砷危害区进行了概率划分。观测到的地下水砷的发生与地质构造、地下水灌溉区(%)和海拔高度关系最为密切。在喜马拉雅山大江恒河-布拉马普特拉河流域的大部分地区都观察到了普遍的砷污染,但也存在几个更为局部的污染区,主要与古老的构造带、火成岩省、现代三角洲含水层和亲硫矿物化区有关。模型结果表明,在尚未检测到的地区存在砷危害的潜在风险。我们的模型在预测地下水砷方面表现良好,其准确性分别为 82%和 84%;测试数据集和验证数据集的曲线下面积(AUC)分别为 0.89 和 0.88。根据实地观测数据,估计印度约有 9000 万人面临高浓度地下水砷的威胁,其中五个砷危害最严重的邦是西孟加拉邦(2800 万人)、比哈尔邦(2100 万人)、北方邦(1500 万人)、阿萨姆邦(860 万人)和旁遮普邦(600 万人)。如果考虑到模型预测的危害(超过 2.5 亿人),则可能更多。因此,我们的研究提供了印度高浓度地下水砷的详细、定量评估,描绘了可能的内在影响和外在驱动力。该预测模型有助于预测测量数据有限地区的砷危害区。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验