Suppr超能文献

A17无长突细胞和嗅小球细胞:早期感觉信息的并行处理器

A17 Amacrine Cells and Olfactory Granule Cells: Parallel Processors of Early Sensory Information.

作者信息

Egger Veronica, Diamond Jeffrey S

机构信息

Department of Neurophysiology, Institute of Zoology, Universität Regensburg, Regensburg, Germany.

Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.

出版信息

Front Cell Neurosci. 2020 Nov 5;14:600537. doi: 10.3389/fncel.2020.600537. eCollection 2020.

Abstract

Neurons typically receive synaptic input in their dendritic arbor, integrate inputs in their soma, and send output action potentials through their axon, following Cajal's law of dynamic polarization. Two notable exceptions are retinal amacrine cells and olfactory granule cells (GCs), which flout Cajal's edict by providing synaptic output from the same dendrites that collect synaptic input. Amacrine cells, a diverse cell class comprising >60 subtypes, employ various dendritic input/output strategies, but A17 amacrine cells (A17s) in particular share further interesting functional characteristics with GCs: both receive excitatory synaptic input from neurons in the primary glutamatergic pathway and return immediate, reciprocal feedback GABAergic inhibitory synapses to the same synaptic terminals that provided input. Both neurons thereby process signals locally within their dendrites, shaping many parallels, signaling pathways independently. The similarities between A17s and GCs cast into relief striking differences that may indicate distinct processing roles within their respective circuits: First, they employ partially dissimilar molecular mechanisms to transform excitatory input into inhibitory output; second, GCs fire action potentials, whereas A17s do not. Third, GC signals may be influenced by cortical feedback, whereas the mammalian retina receives no such retrograde input. Finally, A17s constitute just one subtype within a diverse class that is specialized in a particular task, whereas the more homogeneous GCs may play more diverse signaling roles multiple processing modes. Here, we review these analogies and distinctions between A17 amacrine cells and granule cells, hoping to gain further insight into the operating principles of these two sensory circuits.

摘要

根据卡哈尔的动态极化定律,神经元通常在其树突分支中接收突触输入,在其胞体中整合输入,并通过其轴突发送输出动作电位。两个显著的例外是视网膜无长突细胞和嗅觉颗粒细胞,它们违反了卡哈尔的法则,从收集突触输入的同一树突提供突触输出。无长突细胞是一类多样的细胞,包含60多种亚型,采用各种树突输入/输出策略,但A17无长突细胞(A17s)尤其与颗粒细胞具有进一步有趣的功能特征:两者都从初级谷氨酸能通路中的神经元接收兴奋性突触输入,并向提供输入的相同突触终末返回即时的、相互的反馈性GABA能抑制性突触。因此,这两种神经元都在其树突内局部处理信号,独立塑造许多平行的信号通路。A17s和颗粒细胞之间的相似性凸显了显著的差异,这可能表明它们在各自回路中具有不同的处理作用:首先,它们采用部分不同的分子机制将兴奋性输入转化为抑制性输出;其次,颗粒细胞能产生动作电位,而A17s不能。第三,颗粒细胞的信号可能受皮质反馈的影响,而哺乳动物视网膜不接受这种逆行输入。最后,A17s只是专门执行特定任务的多样细胞类中的一个亚型,而更为同质的颗粒细胞可能在多种处理模式中发挥更多样化的信号作用。在这里,我们综述了A17无长突细胞和颗粒细胞之间的这些相似性和差异,希望能进一步深入了解这两种感觉回路的运作原理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdc0/7674606/15c872aff564/fncel-14-600537-g0001.jpg

相似文献

1
A17 Amacrine Cells and Olfactory Granule Cells: Parallel Processors of Early Sensory Information.
Front Cell Neurosci. 2020 Nov 5;14:600537. doi: 10.3389/fncel.2020.600537. eCollection 2020.
2
CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
J Neurosci. 2020 Aug 5;40(32):6189-6206. doi: 10.1523/JNEUROSCI.0769-20.2020. Epub 2020 Jun 30.
3
Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb.
J Neurosci. 2020 Dec 9;40(50):9701-9714. doi: 10.1523/JNEUROSCI.0989-20.2020. Epub 2020 Nov 24.
4
7
Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling.
J Neurosci. 2019 Jan 23;39(4):627-650. doi: 10.1523/JNEUROSCI.2267-18.2018. Epub 2018 Nov 20.
8
Early synapse formation in developing interneurons of the adult olfactory bulb.
J Neurosci. 2009 Dec 2;29(48):15039-52. doi: 10.1523/JNEUROSCI.3034-09.2009.
10
Synaptic inputs to physiologically identified retinal X-cells in the cat.
J Comp Neurol. 1991 Dec 8;314(2):350-66. doi: 10.1002/cne.903140210.

引用本文的文献

1
Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks.
Front Cell Neurosci. 2021 Jun 22;15:662184. doi: 10.3389/fncel.2021.662184. eCollection 2021.
2
Olfactory bulb granule cells: specialized to link coactive glomerular columns for percept generation and discrimination of odors.
Cell Tissue Res. 2021 Jan;383(1):495-506. doi: 10.1007/s00441-020-03402-7. Epub 2021 Jan 6.

本文引用的文献

2
Subpopulations of Projection Neurons in the Olfactory Bulb.
Front Neural Circuits. 2020 Aug 28;14:561822. doi: 10.3389/fncir.2020.561822. eCollection 2020.
3
Dendritic integration in olfactory bulb granule cells upon simultaneous multispine activation: Low thresholds for nonlocal spiking activity.
PLoS Biol. 2020 Sep 23;18(9):e3000873. doi: 10.1371/journal.pbio.3000873. eCollection 2020 Sep.
4
Mouse Retinal Cell Atlas: Molecular Identification of over Sixty Amacrine Cell Types.
J Neurosci. 2020 Jul 1;40(27):5177-5195. doi: 10.1523/JNEUROSCI.0471-20.2020. Epub 2020 May 26.
5
Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes.
Neuron. 2019 Dec 18;104(6):1039-1055.e12. doi: 10.1016/j.neuron.2019.11.006. Epub 2019 Nov 26.
6
Molecular signatures of retinal ganglion cells revealed through single cell profiling.
Sci Rep. 2019 Oct 31;9(1):15778. doi: 10.1038/s41598-019-52215-4.
7
8
Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling.
J Neurosci. 2019 Jan 23;39(4):627-650. doi: 10.1523/JNEUROSCI.2267-18.2018. Epub 2018 Nov 20.
10
Axonal sodium channel NaV1.2 drives granule cell dendritic GABA release and rapid odor discrimination.
PLoS Biol. 2018 Aug 20;16(8):e2003816. doi: 10.1371/journal.pbio.2003816. eCollection 2018 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验