Department of Anatomy and Neurobiology, Department of Radiology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
J Neurosci. 2020 Aug 5;40(32):6189-6206. doi: 10.1523/JNEUROSCI.0769-20.2020. Epub 2020 Jun 30.
Delineation of functional synaptic connections is fundamental to understanding sensory processing. Olfactory signals are synaptically processed initially in the olfactory bulb (OB) where neural circuits are formed among inhibitory interneurons and the output neurons mitral cells (MCs) and tufted cells (TCs). TCs function in parallel with but differently from MCs and are further classified into multiple subpopulations based on their anatomic and functional heterogeneities. Here, we combined optogenetics with electrophysiology to characterize the synaptic transmission from a subpopulation of TCs, which exclusively express the neuropeptide cholecystokinin (CCK), to two groups of spatially segregated GABAergic interneurons, granule cells (GCs) and glomerular interneurons in mice of both sexes with four major findings. First, CCKergic TCs receive direct input from the olfactory sensory neurons (OSNs). This monosynaptic transmission exhibits high fidelity in response to repetitive OSN input. Second, CCKergic TCs drive GCs through two functionally distinct types of monosynaptic connections: (1) dendrodendritic synapses onto GC distal dendrites via their lateral dendrites in the superficial external plexiform layer (EPL); (2) axodendritic synapses onto GC proximal dendrites via their axon collaterals or terminals in the internal plexiform layer (IPL) on both sides of each bulb. Third, CCKergic TCs monosynaptically excite two subpopulations of inhibitory glomerular interneurons via dendrodendritic synapses. Finally, sniff-like patterned activation of CCKergic TCs induces robust frequency-dependent depression of the dendrodendritic synapses but facilitation of the axodendritic synapses. These results demonstrated important roles of the CCKergic TCs in olfactory processing by orchestrating OB inhibitory activities. Neuronal morphology and organization in the olfactory bulb (OB) have been extensively studied, however, the functional operation of neuronal interactions is not fully understood. We combined optogenetic and electrophysiological approaches to investigate the functional operation of synaptic connections between a specific population of excitatory output neuron and inhibitory interneurons in the OB. We found that these output neurons formed distinct types of synapses with two populations of spatially segregated interneurons. The functional characteristics of these synapses vary significantly depending on the presynaptic compartments so that these output neurons can dynamically rebalance inhibitory feedback or feedforward to other neurons types in the OB in response to dynamic rhythmic inputs.
功能突触连接的描绘对于理解感觉处理至关重要。嗅觉信号最初在嗅球 (OB) 中通过突触进行处理,在那里,抑制性中间神经元和输出神经元——僧帽细胞 (MCs) 和丛状细胞 (TCs)——之间形成神经回路。TCs 与 MCs 平行但不同,并且根据它们的解剖和功能异质性进一步分为多个亚群。在这里,我们结合光遗传学和电生理学来描述来自一个亚群的 TC 的突触传递,该亚群专门表达神经肽胆囊收缩素 (CCK),到两种空间分离的 GABA 能中间神经元,颗粒细胞 (GCs) 和肾小球中间神经元在两性小鼠中,有四个主要发现。首先,CCK 能 TC 接收来自嗅觉感觉神经元 (OSN) 的直接输入。这种单突触传递对重复 OSN 输入具有高保真度。其次,CCK 能 TC 通过两种功能上不同类型的单突触连接驱动 GCs:(1)通过其在浅层外丛状层 (EPL) 中的侧突在 GC 远端树突上的树突树突突触;(2)通过其在每个 OB 两侧的内丛状层 (IPL) 中的轴突侧支或末端在 GC 近端树突上的轴突树突突触。第三,CCK 能 TC 通过树突树突突触单突触兴奋两种抑制性肾小球中间神经元亚群。最后,CCK 能 TC 的类嗅激活诱导树突树突突触的强频率依赖性抑制,但促进轴突树突突触。这些结果表明,CCK 能 TC 通过协调 OB 抑制活性,在嗅觉处理中发挥重要作用。嗅球 (OB) 的神经元形态和组织已被广泛研究,但神经元相互作用的功能操作尚未完全了解。我们结合光遗传学和电生理学方法来研究特定兴奋性输出神经元和 OB 中抑制性中间神经元之间突触连接的功能操作。我们发现这些输出神经元与两种空间分离的中间神经元群体形成不同类型的突触。这些突触的功能特征差异很大,这取决于突触前隔室,因此这些输出神经元可以根据动态节律输入,动态地重新平衡对 OB 中其他神经元类型的抑制反馈或前馈。