Riazanski Vladimir, Sui Zihao, Nelson Deborah J
The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA.
iScience. 2020 Nov 1;23(11):101759. doi: 10.1016/j.isci.2020.101759. eCollection 2020 Nov 20.
The relative contribution of the two phagosomal catabolic processes, oxidative and metabolic, was assessed in the killing of in phagosomes of alveolar macrophages (AMs) from wild-type ( ) or NOX-defective ( ) mice. Free radical release and degradative acidification within AM phagosomes is sequential and separable. The initial NOX activity, identifiable as a transient alkalinization, leads to fast bacterial wall permeabilization by ROS. This is followed by V-ATPase-induced acidification and enzymatic bacterial degradation contributed through phagosomal-lysosomal fusion. The alkalinization/acidification ratio was variable among phagosomes within single cells of a given genotype and not as a function of macrophage M1 or M2 classification, possibly owing to uneven distribution of phagosomal transporter proteins. Irregular, excessive NOX activity prevents phago-lysosomal fusion, and the lack of V-ATPase-induced acidification leads to bacterial stasis in the phagosome. Thus, efficient phagosomal bacterial killing is a result of tightly balanced activity between two processes.
在来自野生型( )或NOX缺陷型( )小鼠的肺泡巨噬细胞(AM)吞噬体中,评估了氧化和代谢这两种吞噬体分解代谢过程在杀死 中的相对贡献。AM吞噬体内的自由基释放和降解性酸化是相继且可分离的。最初可识别为短暂碱化的NOX活性,会导致ROS快速使细菌壁通透性增加。随后是V-ATP酶诱导的酸化以及通过吞噬体-溶酶体融合促成的酶促细菌降解。在给定基因型的单个细胞内的吞噬体中,碱化/酸化比率各不相同,且不是巨噬细胞M1或M2分类的函数,这可能是由于吞噬体转运蛋白分布不均所致。不规则、过度的NOX活性会阻止吞噬体-溶酶体融合,而缺乏V-ATP酶诱导的酸化会导致吞噬体内细菌停滞。因此,吞噬体对细菌的有效杀伤是这两个过程之间紧密平衡活动的结果。