Suppr超能文献

用于锂存储的由商业合金和一氧化碳制备的二维硅/碳以及基于柔性TiCT MXene的锂金属电池

Two-Dimensional Silicon/Carbon from Commercial Alloy and CO for Lithium Storage and Flexible TiCT MXene-Based Lithium-Metal Batteries.

作者信息

An Yongling, Tian Yuan, Zhang Yuchan, Wei Chuanliang, Tan Liwen, Zhang Chenghui, Cui Naxin, Xiong Shenglin, Feng Jinkui, Qian Yitai

机构信息

SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250061, People's Republic of China.

Shenzhen Institute of Shandong University, Shandong University, Shenzhen 518057, People's Republic of China.

出版信息

ACS Nano. 2020 Dec 22;14(12):17574-17588. doi: 10.1021/acsnano.0c08336. Epub 2020 Nov 30.

Abstract

Silicon has been considered as the most promising anode candidate for next-generation lithium-ion batteries. However, the fast capacity decay caused by huge volume expansion and low electronic conductivity limit the electrochemical performance. Herein, atomic distributed, air-stable, layer-by-layer-assembled Si/C (L-Si/C) is designed and constructed from commercial micron-sized layered CaSi alloy with the greenhouse gas CO. The inner structure of Si as well as the content and graphitization of C can be regulated by simply adjusting the reaction conditions. The rationally designed layered structure can enhance electronic conductivity and mitigate volume change without disrupting the carbon layer or destroying the solid electrolyte interface. Moreover, the single-layer Si and C can enhance lithium-ion transport in active materials. With these advantages, L-Si/C anode delivers an 82.85% capacity retention even after 3200 cycles and superior rate performance. The battery-capacitance dual-model mechanism is certified quantitative kinetics measurement. Besides, the self-standing architecture is designed assembling L-Si/C and MXene. Lithiophilic L-Si/C can guide homogeneous Li deposition with alleviated volume change. With the MXene/L-Si/C host for lithium-metal batteries, an ultralong life span up to 500 h in a carbonate-based electrolyte is achieved. A full cell with a high-energy 5 V LiNiMnO cathode is constructed to verify the practicality of L-Si/C and MXene/L-Si/C. The rational design of a special layer structure may propose a strategy for other materials and energy storage systems.

摘要

硅被认为是下一代锂离子电池最有前途的负极候选材料。然而,巨大的体积膨胀和低电子电导率导致的快速容量衰减限制了其电化学性能。在此,通过商业微米级层状CaSi合金与温室气体CO设计并构建了原子分布、空气稳定、逐层组装的Si/C(L-Si/C)。通过简单调整反应条件,可以调节Si的内部结构以及C的含量和石墨化程度。合理设计的层状结构可以提高电子电导率并减轻体积变化,而不会破坏碳层或固体电解质界面。此外,单层Si和C可以增强活性材料中的锂离子传输。凭借这些优势,L-Si/C负极即使在3200次循环后仍具有82.85%的容量保持率和优异的倍率性能。通过定量动力学测量验证了电池-电容双模型机制。此外,通过组装L-Si/C和MXene设计了自立结构。亲锂的L-Si/C可以引导均匀的锂沉积,减轻体积变化。使用用于锂金属电池的MXene/L-Si/C主体,在碳酸盐基电解质中实现了长达500小时的超长寿命。构建了具有高能5V LiNiMnO正极的全电池,以验证L-Si/C和MXene/L-Si/C的实用性。特殊层状结构的合理设计可能为其他材料和储能系统提供一种策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验