Li Xin, Chen Zhiyu, Li Ang, Yu Yingchun, Chen Xiaohong, Song Huaihe
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
ACS Appl Mater Interfaces. 2020 Oct 28;12(43):48718-48728. doi: 10.1021/acsami.0c15527. Epub 2020 Oct 13.
As the demand for batteries increases with the development of electric vehicles, the energy density of lithium-ion batteries (LIBs) should be continuously enhanced. Due to the excellent theoretical specific capacity, silicon (Si) is the most promising anode material for LIBs. Nevertheless, the application of Si-based anodes is constrained by critical problems such as low conductivity and extreme volume change. Herein, we demonstrate an effective strategy for the fabrication of a three-dimensional (3D) hierarchical porous-structured Si-based anode with dual MXene protection (namely, SiNP@MX1/MX2). By electrostatic force induced self-assembly between modified Si with a positive charge and MXene nanosheets with a negative charge on the surface, Si nanoparticles are riveted to the MXene nanosheets (namely, SiNP@MX1), and then embedded into the 3D MXene skeleton (MX2) via a hydrothermal reaction and freeze-drying. Through the tailored and reasonable design, the internal MX1 coating can accommodate the volume expansion and avoid particle aggregation. The external MX2 allows for rapid electron transport and ion transfer while further buffering volume changes. Most importantly, by preventing Si from directly contacting the electrolyte, the double MXene-wrapped protection design benefits from the formation of a stable solid electrolyte interphase (SEI) film. The SiNP@MX1/MX2 anode material has a high capacity of 1422 mA h g at a current density of 0.5 A g after 200 cycles, excellent cycle stability, and good rate performance. At the same time, the method proposed in this study is expected to be applied to the preparation of other alloy anodes/MXene hybrids for storage batteries.
随着电动汽车的发展对电池的需求增加,锂离子电池(LIBs)的能量密度应不断提高。由于具有优异的理论比容量,硅(Si)是LIBs最有前景的负极材料。然而,硅基负极的应用受到诸如低导电性和极端体积变化等关键问题的限制。在此,我们展示了一种制备具有双MXene保护的三维(3D)分级多孔结构硅基负极(即SiNP@MX1/MX2)的有效策略。通过带正电荷的改性硅与表面带负电荷的MXene纳米片之间的静电力诱导自组装,硅纳米颗粒被铆接到MXene纳米片上(即SiNP@MX1),然后通过水热反应和冷冻干燥嵌入到3D MXene骨架(MX2)中。通过定制和合理设计,内部的MX1涂层可以适应体积膨胀并避免颗粒聚集。外部的MX2允许快速的电子传输和离子转移,同时进一步缓冲体积变化。最重要的是,通过防止硅直接与电解质接触,双MXene包裹的保护设计有利于形成稳定的固体电解质界面(SEI)膜。SiNP@MX1/MX2负极材料在0.5 A g的电流密度下经过200次循环后具有1422 mA h g的高容量、优异的循环稳定性和良好的倍率性能。同时,本研究提出的方法有望应用于制备其他用于蓄电池的合金负极/MXene复合材料。