Diabetes Center Bad Lauterberg, Bad Lauterberg im Harz, Germany.
Diabetes Division, Katholisches Klinikum Bochum, St. Josef-Hospital, Klinikum der Ruhr-Universität Bochum, Bochum, Germany.
J Diabetes Sci Technol. 2021 Nov;15(6):1273-1281. doi: 10.1177/1932296820972691. Epub 2020 Nov 30.
Basal rate profiles in patients with type 1 diabetes on insulin pump therapy are subject to enormous inter-individual heterogeneity. Tools to predict basal rates based on clinical characteristics may facilitate insulin pump therapy.
Data from 339 consecutive in-patients with adult type 1 diabetes on insulin pump therapy were collected. Basal rate tests were performed over 24 hours. A mathematical algorithm to predict individual basal rate profiles was generated by relating the individual insulin demand to selected clinical characteristics in an exploratory cohort of 170 patients. The predicted insulin pump profiles were validated in a confirmatory cohort of 169 patients.
Basal rates (0.27 ± 0.01 IU.dkg) showed circadian variations with peaks corresponding to the "dawn" and "dusk" phenomena. Age, gender, duration of pump treatment, body-mass-index, HbA, and triacylglycerol concentrations largely predicted the individual basal insulin demand per day (IU/d; exploratory vs prospective cohorts: r = 0.518, < .0001). Model-predicted and actual basal insulin rates were not different (exploratory cohort: Δ 0.1 (95% CI -0.9; 1.0 U/d; = .95; prospective cohort: Δ -0.5 (95% CI -1.5; 0.6 IU/d; = .46). Similarly, precise predictions were possible for each hour of the day. Actual and predicted "dawn" index correlated significantly in the exploratory but not in the confirmatory cohort.
Clinical characteristics predict 52% of the variation in individual basal rate profiles, including their diurnal fluctuations. The multivariate regression model can be used to initiate or optimize insulin pump treatment in patients with type 1 diabetes.
接受胰岛素泵治疗的 1 型糖尿病患者的基础率谱存在很大的个体间异质性。基于临床特征预测基础率的工具可能有助于胰岛素泵治疗。
收集了 339 例接受胰岛素泵治疗的成年 1 型糖尿病连续住院患者的数据。进行了 24 小时的基础率测试。在 170 例患者的探索性队列中,通过将个体胰岛素需求与选定的临床特征相关联,生成了一种预测个体基础率谱的数学算法。在 169 例患者的验证性队列中验证了预测的胰岛素泵曲线。
基础率(0.27±0.01IU.dkg)呈昼夜节律变化,峰值对应“黎明”和“黄昏”现象。年龄、性别、泵治疗时间、体重指数、HbA 和三酰甘油浓度在很大程度上预测了每天的个体基础胰岛素需求(IU/d;探索性与前瞻性队列:r=0.518,<0.0001)。模型预测和实际基础胰岛素率没有差异(探索性队列:Δ0.1(95%CI-0.9;1.0U/d;=0.95;前瞻性队列:Δ-0.5(95%CI-1.5;0.6IU/d;=0.46)。同样,每天的每个小时也可以进行精确预测。在探索性队列中,实际和预测的“黎明”指数显著相关,但在验证性队列中则不相关。
临床特征可预测个体基础率谱的 52%变化,包括其昼夜波动。多元回归模型可用于启动或优化 1 型糖尿病患者的胰岛素泵治疗。