Human Variation and Identification Research Unit (HVIRU), School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa.
Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein, South Africa.
Med Sci Law. 2021 Jul;61(3):170-179. doi: 10.1177/0025802420977018. Epub 2020 Nov 29.
Average facial soft-tissue thickness (FSTT) databanks are continuously developed and applied within craniofacial identification. This study considered and tested a subject-specific regression model alternative for estimating the FSTT values for oral midline landmarks using skeletal projection measurements. Measurements were taken from cone-beam computed tomography scans of 100 South African individuals (60 male, 40 female; = 35 years). Regression equations incorporating sex categories were generated. This significantly improved the goodness-of-fit (-value). Validation tests compared the constructed regression models with mean FSTT data collected from this study, existing South African FSTT data, a universal total weighted mean approach with pooled demographic data and collection techniques and a regression model approach that uses bizygomatic width and maximum cranial breadth dimensions. The generated regression equations demonstrated individualised results, presenting a total mean inaccuracy (TMI) of 1.53 mm using dental projection measurements and 1.55 mm using cemento-enamel junction projection measurements. These slightly outperformed most tested mean models (TMI ranged from 1.42 to 4.43 mm), and substantially outperformed the pre-existing regression model approach (TMI = 5.12 mm). The newly devised regressions offer a subject-specific solution to FSTT estimation within a South African population. A continued development in sample size and validation testing may help substantiate its application within craniofacial identification.
平均面部软组织厚度 (FSTT) 数据库在颅面识别中不断得到开发和应用。本研究考虑并测试了一种替代方法,即使用骨骼投影测量值来估计口腔中线标志点的 FSTT 值的个体特定回归模型。测量值取自 100 名南非个体的锥形束计算机断层扫描 (CBCT)(60 名男性,40 名女性;平均年龄为 35 岁)。生成了包含性别类别的回归方程。这显著提高了拟合优度(-值)。验证测试将构建的回归模型与本研究中收集的平均 FSTT 数据、现有的南非 FSTT 数据、具有 pooled 人口统计学数据和收集技术的通用总加权平均值方法以及使用双侧颧骨宽度和最大颅宽维度的回归模型方法进行了比较。生成的回归方程提供了个性化的结果,使用牙弓投影测量值的总平均误差(TMI)为 1.53mm,使用牙釉质-牙骨质联合投影测量值的 TMI 为 1.55mm。这些略优于大多数经过测试的平均模型(TMI 范围为 1.42 至 4.43mm),并且大大优于现有的回归模型方法(TMI=5.12mm)。新设计的回归提供了一种特定于南非人群的 FSTT 估计的个体解决方案。继续增加样本量和验证测试可能有助于证明其在颅面识别中的应用。