Suppr超能文献

计算引导的严重急性呼吸综合征冠状病毒 2 核衣壳蛋白 N 端结构域新型有效抑制剂的鉴定。

Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2.

机构信息

Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.

出版信息

J Biomol Struct Dyn. 2022 Jun;40(9):4084-4099. doi: 10.1080/07391102.2020.1852968. Epub 2020 Nov 30.

Abstract

The Coronavirus Disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 is an exceptionally contagious disease that leads to global epidemics with elevated mortality and morbidity. There are currently no efficacious drugs targeting coronavirus disease 2019, therefore, it is an urgent requirement for the development of drugs to control this emerging disease. Owing to the importance of nucleocapsid protein, the present study focuses on targeting the N-terminal domain of nucleocapsid protein from severe acute respiratory syndrome coronavirus 2 to identify the potential compounds by computational approaches such as pharmacophore modeling, virtual screening, docking and molecular dynamics. We found three molecules (ZINC000257324845, ZINC000005169973 and ZINC000009913056), which adopted a similar conformation as guanosine monophosphate (GMP) within the N-terminal domain active site and exhibiting high binding affinity (>-8.0 kcalmol). All the identified compounds were stabilized by hydrogen bonding with Arg107, Tyr111 and Arg149 of N-terminal domain. Additionally, the aromatic ring of lead molecules formed π interactions with Tyr109 of N-terminal domain. Molecular dynamics and Molecular mechanic/Poisson-Boltzmann surface area results revealed that N-terminal domain - ligand(s) complexes are less dynamic and more stable than N-terminal domain - GMP complex. As the identified compounds share the same corresponding pharmacophore properties, therefore, the present results may serve as a potential lead for the development of inhibitors against severe acute respiratory syndrome coronavirus 2. Communicated by Ramaswamy H. Sarma.

摘要

由严重急性呼吸系统综合征冠状病毒 2 引起的 2019 年冠状病毒病是一种极具传染性的疾病,可导致高死亡率和发病率的全球流行。目前针对 2019 年冠状病毒病没有有效的药物,因此,开发控制这种新发疾病的药物是当务之急。由于核衣壳蛋白的重要性,本研究专注于针对严重急性呼吸系统综合征冠状病毒 2 的核衣壳蛋白的 N 端结构域,通过计算方法(如药效团建模、虚拟筛选、对接和分子动力学)来识别潜在的化合物。我们发现了三个分子(ZINC000257324845、ZINC000005169973 和 ZINC000009913056),它们在 N 端结构域活性位点内采用了与鸟苷一磷酸(GMP)相似的构象,并表现出高结合亲和力(>-8.0 kcalmol)。所有鉴定出的化合物都通过与 N 端结构域的 Arg107、Tyr111 和 Arg149 形成氢键而得到稳定。此外,先导化合物的芳环与 N 端结构域的 Tyr109 形成π相互作用。分子动力学和分子力学/泊松-玻尔兹曼表面面积结果表明,N 端结构域-配体(s)复合物比 N 端结构域-GMP 复合物的动力学更小,更稳定。由于鉴定出的化合物具有相同的药效团特性,因此,本研究结果可能为开发针对严重急性呼吸系统综合征冠状病毒 2 的抑制剂提供潜在的先导化合物。

相似文献

2
3
Novel nucleocapsid protein-targeting phenanthridine inhibitors of SARS-CoV-2.
Eur J Med Chem. 2022 Jan 5;227:113966. doi: 10.1016/j.ejmech.2021.113966. Epub 2021 Nov 1.
4
Computational drug repurposing study of the RNA binding domain of SARS-CoV-2 nucleocapsid protein with antiviral agents.
Biotechnol Prog. 2021 Mar;37(2):e3110. doi: 10.1002/btpr.3110. Epub 2020 Dec 30.
5
Phylogenic analysis of coronavirus genome and molecular studies on potential anti-COVID-19 agents from selected FDA-approved drugs.
J Biomol Struct Dyn. 2022 Oct;40(17):7726-7743. doi: 10.1080/07391102.2021.1902392. Epub 2021 Mar 22.
6
Small molecule stabilization of non-native protein-protein interactions of SARS-CoV-2 N protein as a mechanism of action against COVID-19.
J Biomol Struct Dyn. 2022 Jul;40(10):4488-4495. doi: 10.1080/07391102.2020.1860828. Epub 2020 Dec 28.
7
Targeting SARS-CoV-2 nucleocapsid oligomerization: Insights from molecular docking and molecular dynamics simulations.
J Biomol Struct Dyn. 2022 Apr;40(6):2430-2443. doi: 10.1080/07391102.2020.1839563. Epub 2020 Nov 3.
9
identification and validation of natural antiviral compounds as potential inhibitors of SARS-CoV-2 methyltransferase.
J Biomol Struct Dyn. 2022 Sep;40(14):6534-6544. doi: 10.1080/07391102.2021.1886174. Epub 2021 Feb 15.
10
The nucleocapsid protein of zoonotic betacoronaviruses is an attractive target for antiviral drug discovery.
Life Sci. 2021 Oct 1;282:118754. doi: 10.1016/j.lfs.2020.118754. Epub 2020 Nov 12.

引用本文的文献

2
A computational study exploring echinoderm-derived compounds for inhibition of aminoglycoside acetyltransferases.
PLoS One. 2025 Jul 1;20(7):e0327409. doi: 10.1371/journal.pone.0327409. eCollection 2025.
4
Identification of SIRT3 modulating compounds in deep-sea fungi metabolites: Insights from molecular docking and MD simulations.
PLoS One. 2025 May 8;20(5):e0323107. doi: 10.1371/journal.pone.0323107. eCollection 2025.
5
Exploring the anti-diabetic potential of the Vigna sesquipedalis using in vitro, in vivo and computational models.
J Comput Aided Mol Des. 2025 Apr 15;39(1):15. doi: 10.1007/s10822-025-00591-7.
8
A Computational Workflow to Predict Biological Target Mutations: The Spike Glycoprotein Case Study.
Molecules. 2023 Oct 14;28(20):7082. doi: 10.3390/molecules28207082.
10
Molecular modeling study of natural products as potential bioactive compounds against SARS-CoV-2.
J Mol Model. 2023 May 22;29(6):183. doi: 10.1007/s00894-023-05586-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验