MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom.
PLoS Med. 2020 Nov 30;17(11):e1003377. doi: 10.1371/journal.pmed.1003377. eCollection 2020 Nov.
The RTS,S/AS01 vaccine against Plasmodium falciparum malaria infection completed phase III trials in 2014 and demonstrated efficacy against clinical malaria of approximately 36% over 4 years for a 4-dose schedule in children aged 5-17 months. Pilot vaccine implementation has recently begun in 3 African countries. If the pilots demonstrate both a positive health impact and resolve remaining safety concerns, wider roll-out could be recommended from 2021 onwards. Vaccine demand may, however, outstrip initial supply. We sought to identify where vaccine introduction should be prioritised to maximise public health impact under a range of supply constraints using mathematical modelling.
Using a mathematical model of P. falciparum malaria transmission and RTS,S vaccine impact, we estimated the clinical cases and deaths averted in children aged 0-5 years in sub-Saharan Africa under 2 scenarios for vaccine coverage (100% and realistic) and 2 scenarios for other interventions (current coverage and World Health Organization [WHO] Global Technical Strategy targets). We used a prioritisation algorithm to identify potential allocative efficiency gains from prioritising vaccine allocation among countries or administrative units to maximise cases or deaths averted. If malaria burden at introduction is similar to current levels-assuming realistic vaccine coverage and country-level prioritisation in areas with parasite prevalence >10%-we estimate that 4.3 million malaria cases (95% credible interval [CrI] 2.8-6.8 million) and 22,000 deaths (95% CrI 11,000-35,000) in children younger than 5 years could be averted annually at a dose constraint of 30 million. This decreases to 3.0 million cases (95% CrI 2.0-4.7 million) and 14,000 deaths (95% CrI 7,000-23,000) at a dose constraint of 20 million, and increases to 6.6 million cases (95% CrI 4.2-10.8 million) and 38,000 deaths (95% CrI 18,000-61,000) at a dose constraint of 60 million. At 100% vaccine coverage, these impact estimates increase to 5.2 million cases (95% CrI 3.5-8.2 million) and 27,000 deaths (95% CrI 14,000-43,000), 3.9 million cases (95% CrI 2.7-6.0 million) and 19,000 deaths (95% CrI 10,000-30,000), and 10.0 million cases (95% CrI 6.7-15.7 million) and 51,000 deaths (95% CrI 25,000-82,000), respectively. Under realistic vaccine coverage, if the vaccine is prioritised sub-nationally, 5.3 million cases (95% CrI 3.5-8.2 million) and 24,000 deaths (95% CrI 12,000-38,000) could be averted at a dose constraint of 30 million. Furthermore, sub-national prioritisation would allow introduction in almost double the number of countries compared to national prioritisation (21 versus 11). If vaccine introduction is prioritised in the 3 pilot countries (Ghana, Kenya, and Malawi), health impact would be reduced, but this effect becomes less substantial (change of <5%) if 50 million or more doses are available. We did not account for within-country variation in vaccine coverage, and the optimisation was based on a single outcome measure, therefore this study should be used to understand overall trends rather than guide country-specific allocation.
These results suggest that the impact of constraints in vaccine supply on the public health impact of the RTS,S malaria vaccine could be reduced by introducing the vaccine at the sub-national level and prioritising countries with the highest malaria incidence.
针对恶性疟原虫感染的 RTS,S/AS01 疫苗已于 2014 年完成 III 期临床试验,在 5-17 月龄儿童中,4 剂方案的临床疟疾有效性约为 36%,持续 4 年。最近在 3 个非洲国家开始了疫苗试点实施。如果试点表明对健康有积极影响并解决了剩余的安全问题,那么从 2021 年起,可能会推荐更广泛的推广。然而,疫苗需求可能会超过初始供应。我们试图通过数学建模,在一系列供应限制下,确定疫苗接种的优先顺序,以最大限度地提高公共卫生的影响。
我们使用恶性疟原虫传播和 RTS,S 疫苗影响的数学模型,在 2 种疫苗覆盖率情景(100%和现实)和 2 种其他干预措施情景(当前覆盖率和世界卫生组织全球技术战略目标)下,估计撒哈拉以南非洲 0-5 岁儿童的临床病例数和死亡人数。我们使用了一种优先排序算法,以确定在国家或行政单位之间优先分配疫苗,以最大限度地减少病例数或死亡人数,从而获得潜在的分配效率收益。如果在疟疾负担与当前水平相似的情况下(假设现实的疫苗覆盖率和国家层面在寄生虫流行率>10%的地区的优先排序),我们估计在剂量限制为 3000 万的情况下,每年可预防 5 岁以下儿童 430 万例疟疾病例(95%可信区间[CrI]为 280-680 万)和 22000 例死亡(95%CrI 为 11000-35000)。这一数字在剂量限制为 2000 万时降至 300 万例(95%CrI 为 200-470 万)和 14000 例死亡(95%CrI 为 7000-23000),在剂量限制为 6000 万时增加到 660 万例(95%CrI 为 420-1080 万)和 38000 例死亡(95%CrI 为 18000-61000)。在 100%的疫苗覆盖率下,这些影响估计值增加到 520 万例(95%CrI 为 350-820 万)和 27000 例死亡(95%CrI 为 14000-43000)、390 万例(95%CrI 为 270-600 万)和 19000 例死亡(95%CrI 为 10000-30000)和 1000 万例(95%CrI 为 670-1570 万)和 51000 例死亡(95%CrI 为 25000-82000)。在现实的疫苗覆盖率下,如果疫苗在国家以下层面进行优先排序,在剂量限制为 3000 万的情况下,可预防 530 万例(95%CrI 为 350-820 万)和 24000 例死亡(95%CrI 为 12000-38000)。此外,与国家优先排序相比,国家以下优先排序可以使引入疫苗的国家数量增加近一倍(21 个与 11 个)。如果在 3 个试点国家(加纳、肯尼亚和马拉维)优先引入疫苗,那么健康影响将会降低,但如果有 5000 万或更多的疫苗可用,这种影响会变得更小(变化小于 5%)。我们没有考虑到疫苗覆盖率在国内的差异,并且优化是基于单一的结果衡量标准,因此本研究应该用于了解总体趋势,而不是指导具体国家的分配。
这些结果表明,通过在国家以下层面引入疫苗并优先考虑疟疾发病率最高的国家,可以减少疫苗供应限制对 RTS,S 疟疾疫苗公共卫生影响的限制。