Suppr超能文献

T1 加权和 T2 加权相减 MRI 图像在脑肿瘤可视化和分级中的应用。

T1-weighted and T2-weighted Subtraction MR Images for Glioma Visualization and Grading.

机构信息

Department of Radiology, University of Miami, Miami, FL.

Department of Radiology, Fortis Memorial Research Institute, Gurgaon, India.

出版信息

J Neuroimaging. 2021 Jan;31(1):124-131. doi: 10.1111/jon.12800. Epub 2020 Nov 30.

Abstract

BACKGROUND AND PURPOSE

To evaluate the performance of multiparametric MR images in differentiation of different regions of the gross tumor area and for assessment of glioma grade.

METHODS

Forty-six glioma subjects (18 grade II, 11 grade III, and 17 grade IV) underwent a comprehensive MR and spectroscopic imaging procedure. Maps were generated by subtraction of T1-weighted images from contrast-enhanced T1-weighted images (ΔT1 map) and T1-weighted images from T2-weighted images (ΔT2 map). Regions of interest (ROIs) were positioned in normal-appearing white matter (NAWM), enhancing tumor, hyperintense T2, necrotic region, and immediate and distal peritumoral regions (IPR and DPR). Relative signal contrast was estimated as difference between mean intensities in ROIs and NAWM. Classification using support vector machines was applied to all image series to determine the efficacy of regional contrast measures for differentiation of low- and high-grade lesions and grade III and IV lesions.

RESULTS

ΔT1 and ΔT2 maps offered higher contrast as compared to other parametric maps in differentiating enhancing tumor and edematous regions, respectively, and provided the highest classification accuracy for differentiating low- and high-grade tumors, of 91% and 90.4%. Choline/N-acetylaspartate maps provided significant contrast for delineating IPR and DPR. For differentiating high-grade gliomas, ΔT2 and ΔT1 maps provided a mean accuracy of 90.9% and 88.2%, which was lower than that obtained using cerebral blood volume (93.7%) and choline/creatine (93.3%) maps.

CONCLUSION

This study showed that subtraction maps provided significant contrast in differentiating several regions of the gross tumor area and are of benefit for accurate tumor grading.

摘要

背景与目的

评估多参数磁共振成像在区分大体肿瘤区域的不同区域和评估胶质瘤分级中的性能。

方法

46 例胶质瘤患者(18 例 II 级,11 例 III 级,17 例 IV 级)接受了全面的磁共振和波谱成像检查。通过从增强 T1 加权图像中减去 T1 加权图像(ΔT1 图)和从 T2 加权图像中减去 T1 加权图像(ΔT2 图)生成图谱。感兴趣区域(ROI)放置在正常表现的白质(NAWM)、增强肿瘤、高 T2 信号、坏死区域以及肿瘤周边的直接区域(IPR)和远端区域(DPR)。通过 ROI 中的平均强度与 NAWM 之间的差异来估计相对信号对比度。使用支持向量机对所有图像系列进行分类,以确定区域对比度测量在区分低级别和高级别病变以及 III 级和 IV 级病变方面的效果。

结果

与其他参数图相比,ΔT1 和 ΔT2 图在区分增强肿瘤和水肿区域方面提供了更高的对比度,并且在区分低级别和高级别肿瘤方面提供了最高的分类准确性,分别为 91%和 90.4%。胆碱/N-乙酰天门冬氨酸图在勾画 IPR 和 DPR 方面提供了显著的对比度。在区分高级别胶质瘤方面,ΔT2 和 ΔT1 图的平均准确性分别为 90.9%和 88.2%,低于脑血容量(93.7%)和胆碱/肌酸(93.3%)图。

结论

本研究表明,减影图在区分大体肿瘤区域的多个区域方面提供了显著的对比度,有助于准确的肿瘤分级。

相似文献

1
T1-weighted and T2-weighted Subtraction MR Images for Glioma Visualization and Grading.
J Neuroimaging. 2021 Jan;31(1):124-131. doi: 10.1111/jon.12800. Epub 2020 Nov 30.
2
Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.
Neuroimage Clin. 2014 Aug 7;5:396-407. doi: 10.1016/j.nicl.2014.08.001. eCollection 2014.
3
Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading.
J Magn Reson Imaging. 2018 Apr;47(4):1099-1111. doi: 10.1002/jmri.25835. Epub 2017 Aug 28.
5
Radiomics strategy for glioma grading using texture features from multiparametric MRI.
J Magn Reson Imaging. 2018 Dec;48(6):1518-1528. doi: 10.1002/jmri.26010. Epub 2018 Mar 23.
8
Data-driven grading of brain gliomas: a multiparametric MR imaging study.
Radiology. 2014 Aug;272(2):494-503. doi: 10.1148/radiol.14132040. Epub 2014 Mar 22.
10
Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
Comput Biol Med. 2018 Aug 1;99:154-160. doi: 10.1016/j.compbiomed.2018.06.009. Epub 2018 Jun 15.

本文引用的文献

1
The Association between Whole-Brain MR Spectroscopy and IDH Mutation Status in Gliomas.
J Neuroimaging. 2020 Jan;30(1):58-64. doi: 10.1111/jon.12685. Epub 2019 Dec 23.
2
Emerging techniques and technologies in brain tumor imaging.
Neuro Oncol. 2014 Oct;16 Suppl 7(Suppl 7):vii12-23. doi: 10.1093/neuonc/nou221.
3
An optimal decisional space for the classification of Alzheimer's disease and mild cognitive impairment.
IEEE Trans Biomed Eng. 2014 Aug;61(8):2245-53. doi: 10.1109/TBME.2014.2310709.
5
Data-driven grading of brain gliomas: a multiparametric MR imaging study.
Radiology. 2014 Aug;272(2):494-503. doi: 10.1148/radiol.14132040. Epub 2014 Mar 22.
7
Study on a method to improve T1 image contrast by the subtraction technique for 3.0 T brain examination.
Clin Imaging. 2014 Mar-Apr;38(2):91-5. doi: 10.1016/j.clinimag.2013.10.008. Epub 2013 Nov 7.
8
Association of metabolite concentrations and water diffusivity in normal appearing brain tissue with glioma grade.
J Neuroimaging. 2014 Nov-Dec;24(6):585-589. doi: 10.1111/jon.12063. Epub 2013 Nov 19.
10
Utility of multiparametric 3-T MRI for glioma characterization.
Neuroradiology. 2013 May;55(5):603-13. doi: 10.1007/s00234-013-1145-x. Epub 2013 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验