Suppr超能文献

非线性显微镜的最新进展:深入洞察与偏振揭示。

Recent advances in nonlinear microscopy: Deep insights and polarized revelations.

机构信息

Center for Systems Biology and Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Chemistry, McGill University, Montreal, Quebec, Canada.

Department of Chemistry, McGill University, Montreal, Quebec, Canada.

出版信息

Int J Biochem Cell Biol. 2021 Jan;130:105896. doi: 10.1016/j.biocel.2020.105896. Epub 2020 Nov 27.

Abstract

Nonlinear microscopy is a technique that utilizes nonlinear interactions between light and matter to image fluorescence and scattering phenomena in biological tissues. Very high peak intensities from focused short pulsed lasers are required for nonlinear excitation due to the extremely low probability of the simultaneous arrival of multiple photons of lower energy to excite fluorophores or interact with selective structures for harmonic generation. Combined with reduced scattering from the utilization of longer wavelengths, the inherent spatial confinement associated with achieving simultaneous arrival of photons within the focal volume enables deep imaging with low out-of-focus background for nonlinear imaging. This review provides an introduction to the different contrast mechanisms available with nonlinear imaging and instrumentation commonly used in nonlinear microscopy. Furthermore, we discuss some recent advances in nonlinear microscopy to extend the imaging penetration depth, conduct histopathological investigations on fresh tissues and examine the molecular order and orientation of molecules using polarization nonlinear microscopy.

摘要

非线性显微镜是一种利用光与物质之间的非线性相互作用来对生物组织中的荧光和散射现象进行成像的技术。由于同时到达多个低能量光子的概率极低,因此需要使用聚焦短脉冲激光来实现非线性激发,以激发荧光团或与用于谐波产生的选择性结构相互作用。结合利用较长波长而导致的散射减少,与在焦体积内同时到达光子相关联的固有空间限制能够实现深层成像,同时具有低离焦背景的低背景。本综述介绍了非线性成像中可用的不同对比机制以及在非线性显微镜中常用的仪器。此外,我们讨论了一些非线性显微镜的最新进展,这些进展扩展了成像的穿透深度,对新鲜组织进行组织病理学研究,并使用偏振非线性显微镜检查分子的有序性和取向。

相似文献

1
Recent advances in nonlinear microscopy: Deep insights and polarized revelations.
Int J Biochem Cell Biol. 2021 Jan;130:105896. doi: 10.1016/j.biocel.2020.105896. Epub 2020 Nov 27.
3
Scanless two-photon excitation with temporal focusing.
Nat Methods. 2020 Jun;17(6):571-581. doi: 10.1038/s41592-020-0795-y. Epub 2020 Apr 13.
5
Imaging deeper than the transport mean free path with multiphoton microscopy.
Biomed Opt Express. 2021 Dec 21;13(1):452-463. doi: 10.1364/BOE.444696. eCollection 2022 Jan 1.
6
Extension of imaging depth in two-photon fluorescence microscopy using a long-wavelength high-pulse-energy femtosecond laser source.
J Microsc. 2011 Aug;243(2):179-83. doi: 10.1111/j.1365-2818.2011.03492.x. Epub 2011 Mar 9.
7
Multiphoton microscopy in biological research.
Curr Opin Chem Biol. 2001 Oct;5(5):603-8. doi: 10.1016/s1367-5931(00)00241-6.

引用本文的文献

1
label-free tissue histology through a microstructured imaging window.
APL Bioeng. 2024 Jan 9;8(1):016102. doi: 10.1063/5.0165411. eCollection 2024 Mar.

本文引用的文献

1
Fast Imaging of SHG Nanoprobes with Multiphoton Light-Sheet Microscopy.
ACS Photonics. 2020 Apr 15;7(4):1036-1049. doi: 10.1021/acsphotonics.9b01749. Epub 2020 Feb 28.
2
Slide-free clinical imaging of melanin with absolute quantities using label-free third-harmonic-generation enhancement-ratio microscopy.
Biomed Opt Express. 2020 May 11;11(6):3009-3024. doi: 10.1364/BOE.391451. eCollection 2020 Jun 1.
3
Label-free assessment of hemodynamics in individual cortical brain vessels using third harmonic generation microscopy.
Biomed Opt Express. 2020 Apr 23;11(5):2665-2678. doi: 10.1364/BOE.385848. eCollection 2020 May 1.
4
Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo.
Light Sci Appl. 2020 May 6;9:79. doi: 10.1038/s41377-020-0317-9. eCollection 2020.
5
Deep three-photon imaging of the brain in intact adult zebrafish.
Nat Methods. 2020 Jun;17(6):605-608. doi: 10.1038/s41592-020-0819-7. Epub 2020 Apr 27.
6
Additive-color multi-harmonic generation microscopy for simultaneous label-free differentiation of plaques, tangles, and neuronal axons.
Biomed Opt Express. 2020 Jan 2;11(2):571-585. doi: 10.1364/BOE.378447. eCollection 2020 Feb 1.
7
Study of the Expression Transition of Cardiac Myosin Using Polarization-Dependent SHG Microscopy.
Biophys J. 2020 Mar 10;118(5):1058-1066. doi: 10.1016/j.bpj.2019.12.030. Epub 2020 Jan 3.
8
An adaptive excitation source for high-speed multiphoton microscopy.
Nat Methods. 2020 Feb;17(2):163-166. doi: 10.1038/s41592-019-0663-9. Epub 2019 Dec 2.
9
Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy.
Nat Commun. 2019 Apr 10;10(1):1662. doi: 10.1038/s41467-019-09552-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验