Malkinson Guy, Mahou Pierre, Chaudan Élodie, Gacoin Thierry, Sonay Ali Y, Pantazis Periklis, Beaurepaire Emmanuel, Supatto Willy
Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau Cedex, France.
Laboratory of Condensed Matter Physics, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France.
ACS Photonics. 2020 Apr 15;7(4):1036-1049. doi: 10.1021/acsphotonics.9b01749. Epub 2020 Feb 28.
Two-photon light-sheet microscopy (2P-SPIM) provides a unique combination of advantages for fast and deep fluorescence imaging in live tissues. Detecting coherent signals such as second-harmonic generation (SHG) in 2P-SPIM in addition to fluorescence would open further imaging opportunities. However, light-sheet microscopy involves an orthogonal configuration of illumination and detection that questions the ability to detect coherent signals. Indeed, coherent scattering from micron-sized structures occurs predominantly along the illumination beam. By contrast, point-like sources such as SHG nanocrystals can efficiently scatter light in multiple directions and be detected using the orthogonal geometry of a light-sheet microscope. This study investigates the suitability of SHG light-sheet microscopy (SHG-SPIM) for fast imaging of SHG nanoprobes. Parameters that govern the detection efficiency of KTiOPO and BaTiO nanocrystals using SHG-SPIM are investigated theoretically and experimentally. The effects of incident polarization, detection numerical aperture, nanocrystal rotational motion, and second-order susceptibility tensor symmetries on the detectability of SHG nanoprobes in this specific geometry are clarified. Guidelines for optimizing SHG-SPIM imaging are established, enabling fast light-sheet imaging combining SHG and two-photon excited fluorescence. Finally, microangiography was achieved in live zebrafish embryos by SHG imaging at up to 180 frames per second and single-particle tracking of SHG nanoprobes in the blood flow.
双光子光片显微镜(2P-SPIM)为活组织中的快速深层荧光成像提供了独特的优势组合。在2P-SPIM中除了检测荧光外还能检测诸如二次谐波产生(SHG)等相干信号,将带来更多的成像机会。然而,光片显微镜涉及照明和检测的正交配置,这对检测相干信号的能力提出了质疑。实际上,微米级结构的相干散射主要沿照明光束发生。相比之下,诸如SHG纳米晶体之类的点状源可以在多个方向上有效地散射光,并利用光片显微镜的正交几何结构进行检测。本研究调查了SHG光片显微镜(SHG-SPIM)对SHG纳米探针快速成像的适用性。从理论和实验上研究了使用SHG-SPIM控制KTiOPO和BaTiO纳米晶体检测效率的参数。阐明了入射偏振、检测数值孔径、纳米晶体旋转运动以及二阶极化率张量对称性对这种特定几何结构中SHG纳米探针可检测性的影响。建立了优化SHG-SPIM成像的指导原则,实现了结合SHG和双光子激发荧光的快速光片成像。最后,通过在活斑马鱼胚胎中以高达每秒180帧的速度进行SHG成像以及对血流中的SHG纳米探针进行单粒子跟踪,实现了微血管造影。