Luo Hang, Pape Christian, Reithmeier Eduard
Institute of Measurement and Automatic Control, Faculty of Mechanical Engineering, Leibniz University Hannover, Nienburger Str. 17, 30167 Hannover, Germany.
Sensors (Basel). 2020 Nov 25;20(23):6726. doi: 10.3390/s20236726.
This paper presents an active wide-baseline triple-camera measurement system designed especially for 3D modeling in general outdoor environments, as well as a novel parallel surface refinement algorithm within the multi-view stereo (MVS) framework. Firstly, the pre-processing module converts the synchronized raw triple images from one single-shot acquisition of our setup to aligned RGB-Depth frames, which are then used for camera pose estimation using iterative closest point (ICP) and RANSAC perspective-n-point (PnP) approaches. Afterwards, an efficient dense reconstruction method, mostly implemented on the GPU in a grid manner, takes the raw depth data as input and optimizes the per-pixel depth values based on the multi-view photographic evidence, surface curvature and depth priors. Through a basic fusion scheme, an accurate and complete 3D model can be obtained from these enhanced depth maps. For a comprehensive test, the proposed MVS implementation is evaluated on benchmark and synthetic datasets, and a real-world reconstruction experiment is also conducted using our measurement system in an outdoor scenario. The results demonstrate that (1) our MVS method achieves very competitive performance in terms of modeling accuracy, surface completeness and noise reduction, given an input coarse geometry; and (2) despite some limitations, our triple-camera setup in combination with the proposed reconstruction routine, can be applied to some practical 3D modeling tasks operated in outdoor environments where conventional stereo or depth senors would normally suffer.
本文介绍了一种专门为一般户外环境中的三维建模设计的有源宽基线三相机测量系统,以及多视图立体(MVS)框架内的一种新颖的并行曲面细化算法。首先,预处理模块将我们的设置单次采集的同步原始三图像转换为对齐的RGB-深度帧,然后使用迭代最近点(ICP)和随机抽样一致性透视n点(PnP)方法将其用于相机姿态估计。之后,一种主要在GPU上以网格方式实现的高效密集重建方法,将原始深度数据作为输入,并基于多视图摄影证据、表面曲率和深度先验对每个像素的深度值进行优化。通过一种基本融合方案,可以从这些增强的深度图中获得准确完整的三维模型。为了进行全面测试,在基准数据集和合成数据集上对所提出的MVS实现进行了评估,并使用我们的测量系统在户外场景中进行了实际重建实验。结果表明:(1)在给定输入粗几何形状的情况下,我们的MVS方法在建模精度、表面完整性和降噪方面取得了极具竞争力的性能;(2)尽管存在一些局限性,但我们的三相机设置与所提出的重建程序相结合,可以应用于传统立体或深度传感器通常会遇到困难的户外环境中的一些实际三维建模任务。