Suppr超能文献

基于无人机多光谱图像估算花生叶面积指数。

Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images.

机构信息

College of Engineering, South China Agricultural University, Guangzhou 510642, China.

Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.

出版信息

Sensors (Basel). 2020 Nov 25;20(23):6732. doi: 10.3390/s20236732.

Abstract

Leaf area index (LAI) is used to predict crop yield, and unmanned aerial vehicles (UAVs) provide new ways to monitor LAI. In this study, we used a fixed-wing UAV with multispectral cameras for remote sensing monitoring. We conducted field experiments with two peanut varieties at different planting densities to estimate LAI from multispectral images and establish a high-precision LAI prediction model. We used eight vegetation indices (VIs) and developed simple regression and artificial neural network (BPN) models for LAI and spectral VIs. The empirical model was calibrated to estimate peanut LAI, and the best model was selected from the coefficient of determination and root mean square error. The red (660 nm) and near-infrared (790 nm) bands effectively predicted peanut LAI, and LAI increased with planting density. The predictive accuracy of the multiple regression model was higher than that of the single linear regression models, and the correlations between Modified Red-Edge Simple Ratio Index (MSR), Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and LAI were higher than the other indices. The combined VI BPN model was more accurate than the single VI BPN model, and the BPN model accuracy was higher. Planting density affects peanut LAI, and reflectance-based vegetation indices can help predict LAI.

摘要

叶面积指数(LAI)用于预测作物产量,而无人机(UAV)为监测 LAI 提供了新的方法。本研究使用带有多光谱相机的固定翼 UAV 进行遥感监测。我们在不同种植密度下对两种花生品种进行了田间试验,以从多光谱图像估算 LAI,并建立高精度的 LAI 预测模型。我们使用了 8 种植被指数(VIs),并为 LAI 和光谱 VIs 开发了简单回归和人工神经网络(BPN)模型。经验模型用于校准以估算花生 LAI,并根据决定系数和均方根误差选择最佳模型。红(660nm)和近红外(790nm)波段有效地预测了花生 LAI,并且 LAI 随种植密度增加而增加。多元回归模型的预测精度高于单一线性回归模型,修正后的红边简单比值指数(MSR)、比值植被指数(RVI)、归一化差异植被指数(NDVI)与 LAI 的相关性高于其他指数。组合 VI BPN 模型比单一 VI BPN 模型更准确,BPN 模型的准确性更高。种植密度影响花生 LAI,基于反射率的植被指数有助于预测 LAI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab17/7728055/4ca0985ccf78/sensors-20-06732-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验