Suppr超能文献

空中高通量鉴定花生叶面积指数和侧向生长

Aerial high-throughput phenotyping of peanut leaf area index and lateral growth.

机构信息

West Tennessee AgResearch and Education Center, Jackson, TN, USA.

School of Plant and Environmental Sciences, Virginia Tech Tidewater AREC, Suffolk, VA, USA.

出版信息

Sci Rep. 2021 Nov 4;11(1):21661. doi: 10.1038/s41598-021-00936-w.

Abstract

Leaf area index (LAI) is the ratio of the total one-sided leaf area to the ground area, whereas lateral growth (LG) is the measure of canopy expansion. They are indicators for light capture, plant growth, and yield. Although LAI and LG can be directly measured, this is time consuming. Healthy leaves absorb in the blue and red, and reflect in the green regions of the electromagnetic spectrum. Aerial high-throughput phenotyping (HTP) may enable rapid acquisition of LAI and LG from leaf reflectance in these regions. In this paper, we report novel models to estimate peanut (Arachis hypogaea L.) LAI and LG from vegetation indices (VIs) derived relatively fast and inexpensively from the red, green, and blue (RGB) leaf reflectance collected with an unmanned aerial vehicle (UAV). In addition, we evaluate the models' suitability to identify phenotypic variation for LAI and LG and predict pod yield from early season estimated LAI and LG. The study included 18 peanut genotypes for model training in 2017, and 8 genotypes for model validation in 2019. The VIs included the blue green index (BGI), red-green ratio (RGR), normalized plant pigment ratio (NPPR), normalized green red difference index (NGRDI), normalized chlorophyll pigment index (NCPI), and plant pigment ratio (PPR). The models used multiple linear and artificial neural network (ANN) regression, and their predictive accuracy ranged from 84 to 97%, depending on the VIs combinations used in the models. The results concluded that the new models were time- and cost-effective for estimation of LAI and LG, and accessible for use in phenotypic selection of peanuts with desirable LAI, LG and pod yield.

摘要

叶面积指数 (LAI) 是总叶面面积与地面面积的比值,而横向生长 (LG) 是冠层扩展的度量。它们是光捕获、植物生长和产量的指标。虽然 LAI 和 LG 可以直接测量,但这很耗时。健康的叶子在蓝色和红色波段吸收,在电磁光谱的绿色波段反射。空中高通量表型 (HTP) 可以从这些区域的叶片反射率中快速获取 LAI 和 LG。在本文中,我们报告了一种新的模型,该模型可以从无人驾驶飞行器 (UAV) 收集的红、绿、蓝 (RGB) 叶片反射率中快速且廉价地获得植被指数 (VI),从而估算花生 (Arachis hypogaea L.) 的 LAI 和 LG。此外,我们评估了这些模型识别 LAI 和 LG 表型变异的适宜性,并预测了早期估计的 LAI 和 LG 对荚果产量的影响。该研究包括 2017 年用于模型训练的 18 个花生基因型,以及 2019 年用于模型验证的 8 个基因型。所使用的 VI 包括蓝绿指数 (BGI)、红-绿比 (RGR)、归一化植物色素比 (NPPR)、归一化绿-红差指数 (NGRDI)、归一化叶绿素色素指数 (NCPI) 和植物色素比 (PPR)。这些模型使用多元线性和人工神经网络 (ANN) 回归,其预测精度取决于模型中使用的 VI 组合,范围从 84%到 97%不等。结果表明,这些新模型可以快速、经济地估算 LAI 和 LG,并且易于用于具有理想 LAI、LG 和荚果产量的花生的表型选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b7b/8569151/a52cf78aa01c/41598_2021_936_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验