Suppr超能文献

从大流行应对储备中鉴定出一种可有效体外抑制新型冠状病毒感染的抗病毒化合物。

Identification of an Antiviral Compound from the Pandemic Response Box that Efficiently Inhibits SARS-CoV-2 Infection In Vitro.

作者信息

Holwerda Melle, V'kovski Philip, Wider Manon, Thiel Volker, Dijkman Ronald

机构信息

Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.

Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.

出版信息

Microorganisms. 2020 Nov 26;8(12):1872. doi: 10.3390/microorganisms8121872.

Abstract

With over 50 million currently confirmed cases worldwide, including more than 1.3 million deaths, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has a major impact on the economy and health care system. Currently, limited prophylactic or therapeutic intervention options are available against SARS-CoV-2. In this study, 400 compounds from the antimicrobial "pandemic response box" library were screened for inhibiting properties against SARS-CoV-2. An initial screen on Vero E6 cells identified five compounds that inhibited SARS-CoV-2 replication. However, validation of the selected hits in a human lung cell line highlighted that only a single compound, namely Retro-2.1, efficiently inhibited SARS-CoV-2 replication. Additional analysis revealed that the antiviral activity of Retro-2.1 occurs at a post-entry stage of the viral replication cycle. Combined, these data demonstrate that stringent in vitro screening of preselected compounds in multiple cell lines refines the rapid identification of new potential antiviral candidate drugs targeting SARS-CoV-2.

摘要

目前全球确诊病例超过5000万例,死亡人数超过130万,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)大流行对经济和医疗系统产生了重大影响。目前,针对SARS-CoV-2的预防性或治疗性干预选择有限。在本研究中,对抗菌“大流行应对盒”文库中的400种化合物进行了抗SARS-CoV-2抑制特性筛选。在Vero E6细胞上进行的初步筛选鉴定出5种抑制SARS-CoV-2复制的化合物。然而,在人肺细胞系中对所选命中化合物的验证表明,只有一种化合物,即Retro-2.1,能有效抑制SARS-CoV-2复制。进一步分析表明,Retro-2.1的抗病毒活性发生在病毒复制周期的进入后阶段。综合这些数据表明,在多个细胞系中对预选化合物进行严格的体外筛选,有助于快速鉴定针对SARS-CoV-2的新的潜在抗病毒候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/027e/7760777/3bc41274c08e/microorganisms-08-01872-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验