Suppr超能文献

传播网络和外寄生虫螨负担在(啮齿目:仓鼠科)中。

Transmission networks and ectoparasite mite burdens in (Rodentia: Cricetidae).

机构信息

Departamento de Biologia, Universidade Federal do Maranhão, Centro de Ciências Biológicas e da Saúde, Avenida dos Portugueses, 1966, Bacanga, 65080805, São Luís, Maranhão, Brazil.

Programa de Pós-graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão, Centro de Ciências Biológicas e da Saúde, Avenida dos Portugueses, 1966, Bacanga, 65080805, São Luís, Maranhão, Brazil.

出版信息

Parasitology. 2021 Apr;148(4):443-450. doi: 10.1017/S0031182020002231. Epub 2020 Dec 1.

Abstract

The host contact network structure results from the movement and behaviour of hosts (e.g. degree of sociability; vagility and greater or lesser fidelity of shelters), which can generate heterogeneity in the transmission of parasites and influence the parasitic burden of individual hosts. In the current study, we tested the hypothesis that the burdens of Gigantolaelaps oudemansi mites are related to the characteristics of the transmission networks of individuals of Oecomys paricola, a solitary rodent. The study was carried out in a savannah habitat in north-eastern Brazil. In the dry season, the rodent network presented sub-groups of rodent individuals interacting with each other, whereas in the wet season, no modules were formed in the network. Mite burden was positively related to the number of connections that an individual host had with other host individuals in the dry season. The pairwise absolute difference between the mean mite burdens among individual rodents was negatively correlated with the similarities of node interactions. No relationships were observed during the wet season. There was a higher heterogeneity of mite burden among hosts in the dry season compare to that in the wet season. In solitary species, spatial organization may show seasonal variation, causing a change in the opportunities of host contacts, thereby influencing the transmission and dispersion of their ectoparasite burdens.

摘要

宿主接触网络结构源于宿主的运动和行为(例如社交程度、迁移能力以及对庇护所的忠诚度更高或更低),这会导致寄生虫传播的异质性,并影响个体宿主的寄生虫负担。在本研究中,我们检验了以下假设:巨须螨的负担与 Oecomys paricola(一种独居啮齿动物)个体的传播网络特征有关。研究在巴西东北部的一个热带稀树草原生境中进行。在旱季,啮齿动物网络呈现出相互作用的啮齿动物个体亚群,而在雨季,网络中没有形成模块。在旱季,螨的负担与个体宿主与其他宿主个体的连接数量呈正相关。在旱季,个体啮齿动物之间的螨负担的平均值的绝对差异与节点相互作用的相似性呈负相关。在雨季没有观察到这种关系。在旱季,宿主之间的螨负担异质性高于雨季。在独居物种中,空间组织可能表现出季节性变化,导致宿主接触机会的改变,从而影响其外寄生虫负担的传播和扩散。

相似文献

1
Transmission networks and ectoparasite mite burdens in (Rodentia: Cricetidae).
Parasitology. 2021 Apr;148(4):443-450. doi: 10.1017/S0031182020002231. Epub 2020 Dec 1.
3
Host social organization and mating system shape parasite transmission opportunities in three European bat species.
Parasitol Res. 2017 Feb;116(2):589-599. doi: 10.1007/s00436-016-5323-8. Epub 2016 Nov 18.
4
Interaction of ectoparasites (Mesostigmata, Phthiraptera and Siphonaptera) with small mammals in Cerrado fragments, western Brazil.
Exp Appl Acarol. 2015 Jul;66(3):369-81. doi: 10.1007/s10493-015-9917-0. Epub 2015 Apr 26.
5
Ectoparasite Burdens of the Damaraland Mole-Rat (Fukomys damarensis) from Southern Africa.
J Parasitol. 2015 Dec;101(6):666-70. doi: 10.1645/15-775. Epub 2015 Aug 6.
6
Ectoparasitic chigger mites on large oriental vole (Eothenomys miletus) across southwest, China.
Parasitol Res. 2016 Feb;115(2):623-32. doi: 10.1007/s00436-015-4780-9.
7
Host-parasite interactions of rodent hosts and ectoparasite communities from different habitats in Germany.
Parasit Vectors. 2021 Feb 17;14(1):112. doi: 10.1186/s13071-021-04615-7.
8
Host associations of Gigantolaelaps (Acari: Laelapidae) in the Cerrado Province of Central Brazil.
J Med Entomol. 1987 Sep;24(5):559-65. doi: 10.1093/jmedent/24.5.559.
10
Facultative and obligate parasite communities exhibit different network properties.
Parasitology. 2013 Sep;140(11):1340-5. doi: 10.1017/S0031182013000851. Epub 2013 Aug 7.

本文引用的文献

1
Host age predicts parasite occurrence, richness, and nested infracommunities in a pilot whale-helminth network.
Parasitol Res. 2020 Jul;119(7):2237-2244. doi: 10.1007/s00436-020-06716-1. Epub 2020 May 26.
2
Forest edges affect ectoparasite infestation patterns of small mammalian hosts in fragmented forests in Madagascar.
Int J Parasitol. 2020 Apr;50(4):299-313. doi: 10.1016/j.ijpara.2020.01.008. Epub 2020 Mar 26.
3
Social network theory in the behavioural sciences: potential applications.
Behav Ecol Sociobiol. 2007;62(1):15-27. doi: 10.1007/s00265-007-0445-8. Epub 2007 Jul 14.
4
Host biology and environmental variables differentially predict flea abundances for two rodent hosts in a plague-relevant system.
Int J Parasitol Parasites Wildl. 2019 Apr 29;9:174-183. doi: 10.1016/j.ijppaw.2019.04.011. eCollection 2019 Aug.
5
Age-specific gastrointestinal parasite shedding in free-ranging cheetahs (Acinonyx jubatus) on Namibian farmland.
Parasitol Res. 2019 Mar;118(3):851-859. doi: 10.1007/s00436-018-6190-2. Epub 2019 Jan 31.
6
Present and future Köppen-Geiger climate classification maps at 1-km resolution.
Sci Data. 2018 Oct 30;5:180214. doi: 10.1038/sdata.2018.214.
7
Understanding tie strength in social networks using a local "bow tie" framework.
Sci Rep. 2018 Jun 19;8(1):9349. doi: 10.1038/s41598-018-27290-8.
8
Disease implications of animal social network structure: A synthesis across social systems.
J Anim Ecol. 2018 May;87(3):546-558. doi: 10.1111/1365-2656.12786. Epub 2018 Jan 22.
9
A guide to null models for animal social network analysis.
Methods Ecol Evol. 2017 Oct;8(10):1309-1320. doi: 10.1111/2041-210X.12772. Epub 2017 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验