Suppr超能文献

表现出胰腺发育不全并伴有严重糖尿病的基因工程猪。

Genetically engineered pigs manifesting pancreatic agenesis with severe diabetes.

作者信息

Nagaya Masaki, Hasegawa Koki, Watanabe Masahito, Nakano Kazuaki, Okamoto Kazutoshi, Yamada Takeshi, Uchikura Ayuko, Osafune Kenji, Yokota Harumasa, Nagaoka Taiji, Matsunari Hitomi, Umeyama Kazuhiro, Kobayashi Eiji, Nakauchi Hiromitsu, Nagashima Hiroshi

机构信息

Meiji University International Institute for Bio-Resource Research, Meiji University - Ikuta Campus, Kawasaki, Japan

Department of Immunology, St. Marianna University School of Medicine, Kawasaki, Japan.

出版信息

BMJ Open Diabetes Res Care. 2020 Nov;8(2). doi: 10.1136/bmjdrc-2020-001792.

Abstract

INTRODUCTION

Pancreatic duodenum homeobox 1 () expression is crucial for pancreatic organogenesis and is a key regulator of insulin gene expression. Hairy and enhancer of split 1 () controls tissue morphogenesis by maintaining undifferentiated cells. encodes a basic helix loop helix (bHLH) transcriptional repressor and functionally antagonizes positive bHLH genes, such as the endocrine determination gene neurogenin-3. Here, we generated a new pig model for diabetes by genetic engineering and genes.

RESEARCH DESIGN AND METHODS

A transgenic (Tg) chimera pig with germ cells carrying a construct expressing under the control of the promoter was used to mate with wild-type gilts to obtain Tg piglets.

RESULTS

The Tg pigs showed perinatal death; however, this phenotype could be rescued by insulin treatment. The duodenal and splenic lobes of the Tg pigs were slender and did not fully develop, whereas the connective lobe was absent. β cells were not detected, even in the adult pancreas, although other endocrine cells were detected, and exocrine cells functioned normally. The pigs showed no irregularities in any organs, except diabetes-associated pathological alterations, such as retinopathy and renal damage.

CONCLUSION

Tg pigs were an attractive model for the analysis of pancreatic development and testing of novel treatment strategies for diabetes.

摘要

引言

胰腺十二指肠同源盒1()的表达对胰腺器官发生至关重要,并且是胰岛素基因表达的关键调节因子。毛状分裂增强子1()通过维持未分化细胞来控制组织形态发生。编码一种基本螺旋环螺旋(bHLH)转录抑制因子,并在功能上拮抗阳性bHLH基因,如内分泌决定基因神经生成素-3。在此,我们通过基因工程改造和基因,构建了一种新的糖尿病猪模型。

研究设计与方法

使用一种转基因(Tg)嵌合体猪,其生殖细胞携带在启动子控制下表达的构建体,与野生型后备母猪交配以获得Tg仔猪。

结果

Tg猪表现出围产期死亡;然而,这种表型可通过胰岛素治疗得到挽救。Tg猪的十二指肠叶和脾叶细长且未完全发育,而结缔叶缺失。即使在成年胰腺中也未检测到β细胞,尽管检测到了其他内分泌细胞,且外分泌细胞功能正常。除了糖尿病相关的病理改变,如视网膜病变和肾损伤外,这些猪的任何器官均未出现异常。

结论

Tg猪是分析胰腺发育和测试糖尿病新治疗策略的有吸引力的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20dc/7705540/2ff3dedbdac5/bmjdrc-2020-001792f01.jpg

相似文献

1
Genetically engineered pigs manifesting pancreatic agenesis with severe diabetes.
BMJ Open Diabetes Res Care. 2020 Nov;8(2). doi: 10.1136/bmjdrc-2020-001792.
2
Generation of viable PDX1 gene-edited founder pigs as providers of nonmosaics.
Mol Reprod Dev. 2020 Apr;87(4):471-481. doi: 10.1002/mrd.23335. Epub 2020 Mar 12.
3
Transgenic pigs with pancreas-specific expression of green fluorescent protein.
J Reprod Dev. 2014;60(3):230-7. doi: 10.1262/jrd.2014-006. Epub 2014 Apr 21.
4
PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration.
Stem Cell Res Ther. 2017 Nov 2;8(1):240. doi: 10.1186/s13287-017-0694-z.
5
Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.
Mol Metab. 2018 Mar;9:57-68. doi: 10.1016/j.molmet.2018.01.011. Epub 2018 Jan 31.
9
Tshz1 Regulates Pancreatic β-Cell Maturation.
Diabetes. 2015 Aug;64(8):2905-14. doi: 10.2337/db14-1443. Epub 2015 Apr 27.
10
Negative regulation of c-Myc transcription by pancreas duodenum homeobox-1.
Endocrinology. 2007 May;148(5):2168-80. doi: 10.1210/en.2006-1221. Epub 2007 Feb 22.

引用本文的文献

1
Impairment of flicker-induced increase in retinal blood flow in diabetic pigs.
Jpn J Ophthalmol. 2024 Jul;68(4):362-366. doi: 10.1007/s10384-024-01073-3. Epub 2024 Jun 14.
2
Feasibility of large experimental animal models in testing novel therapeutic strategies for diabetes.
World J Diabetes. 2021 Apr 15;12(4):306-330. doi: 10.4239/wjd.v12.i4.306.

本文引用的文献

1
Genetics of diabetes mellitus and diabetes complications.
Nat Rev Nephrol. 2020 Jul;16(7):377-390. doi: 10.1038/s41581-020-0278-5. Epub 2020 May 12.
2
Two cases of agenesis of the dorsal pancreas and a review of the literature.
BMC Gastroenterol. 2020 Apr 6;20(1):94. doi: 10.1186/s12876-020-01245-8.
3
Generation of viable PDX1 gene-edited founder pigs as providers of nonmosaics.
Mol Reprod Dev. 2020 Apr;87(4):471-481. doi: 10.1002/mrd.23335. Epub 2020 Mar 12.
4
Molecular and genetic regulation of pig pancreatic islet cell development.
Development. 2020 Mar 30;147(6):dev186213. doi: 10.1242/dev.186213.
5
Type 1 diabetes mellitus management in young children: implementation of current technologies.
Pediatr Res. 2020 Mar;87(4):624-629. doi: 10.1038/s41390-019-0665-4. Epub 2019 Nov 12.
7
Distributions of endocrine cell clusters during porcine pancreatic development.
PLoS One. 2019 May 10;14(5):e0216254. doi: 10.1371/journal.pone.0216254. eCollection 2019.
8
Charting cellular identity during human in vitro β-cell differentiation.
Nature. 2019 May;569(7756):368-373. doi: 10.1038/s41586-019-1168-5. Epub 2019 May 8.
9
Neurog3-dependent pancreas dysgenesis causes ectopic pancreas in mutant mice.
Development. 2018 Sep 3;145(17):dev163568. doi: 10.1242/dev.163568.
10
Effectiveness of bioengineered islet cell sheets for the treatment of diabetes mellitus.
J Surg Res. 2018 Jul;227:119-129. doi: 10.1016/j.jss.2018.02.019. Epub 2018 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验