Suppr超能文献

人类胰腺祖细胞中 PDX1 靶基因的全基因组分析。

Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.

机构信息

Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Parkring 11, 85748, Garching, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Chair of ß-Cell Biology, Technische Universität München, Ismaningerstraße 22, 81675 München, Germany.

Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Parkring 11, 85748, Garching, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany.

出版信息

Mol Metab. 2018 Mar;9:57-68. doi: 10.1016/j.molmet.2018.01.011. Epub 2018 Jan 31.

Abstract

OBJECTIVE

Homozygous loss-of-function mutations in the gene coding for the homeobox transcription factor (TF) PDX1 leads to pancreatic agenesis, whereas heterozygous mutations can cause Maturity-Onset Diabetes of the Young 4 (MODY4). Although the function of Pdx1 is well studied in pre-clinical models during insulin-producing β-cell development and homeostasis, it remains elusive how this TF controls human pancreas development by regulating a downstream transcriptional program. Also, comparative studies of PDX1 binding patterns in pancreatic progenitors and adult β-cells have not been conducted so far. Furthermore, many studies reported the association between single nucleotide polymorphisms (SNPs) and T2DM, and it has been shown that islet enhancers are enriched in T2DM-associated SNPs. Whether regions, harboring T2DM-associated SNPs are PDX1 bound and active at the pancreatic progenitor stage has not been reported so far.

METHODS

In this study, we have generated a novel induced pluripotent stem cell (iPSC) line that efficiently differentiates into human pancreatic progenitors (PPs). Furthermore, PDX1 and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify PDX1 transcriptional targets and active enhancer and promoter regions. To address potential differences in the function of PDX1 during development and adulthood, we compared PDX1 binding profiles from PPs and adult islets. Moreover, combining ChIP-seq and GWAS meta-analysis data we identified T2DM-associated SNPs in PDX1 binding sites and active chromatin regions.

RESULTS

ChIP-seq for PDX1 revealed a total of 8088 PDX1-bound regions that map to 5664 genes in iPSC-derived PPs. The PDX1 target regions include important pancreatic TFs, such as PDX1 itself, RFX6, HNF1B, and MEIS1, which were activated during the differentiation process as revealed by the active chromatin mark H3K27ac and mRNA expression profiling, suggesting that auto-regulatory feedback regulation maintains PDX1 expression and initiates a pancreatic TF program. Remarkably, we identified several PDX1 target genes that have not been reported in the literature in human so far, including RFX3, required for ciliogenesis and endocrine differentiation in mouse, and the ligand of the Notch receptor DLL1, which is important for endocrine induction and tip-trunk patterning. The comparison of PDX1 profiles from PPs and adult human islets identified sets of stage-specific target genes, associated with early pancreas development and adult β-cell function, respectively. Furthermore, we found an enrichment of T2DM-associated SNPs in active chromatin regions from iPSC-derived PPs. Two of these SNPs fall into PDX1 occupied sites that are located in the intronic regions of TCF7L2 and HNF1B. Both of these genes are key transcriptional regulators of endocrine induction and mutations in cis-regulatory regions predispose to diabetes.

CONCLUSIONS

Our data provide stage-specific target genes of PDX1 during in vitro differentiation of stem cells into pancreatic progenitors that could be useful to identify pathways and molecular targets that predispose for diabetes. In addition, we show that T2DM-associated SNPs are enriched in active chromatin regions at the pancreatic progenitor stage, suggesting that the susceptibility to T2DM might originate from imperfect execution of a β-cell developmental program.

摘要

目的

同源缺失功能突变 Homeobox 转录因子(TF)PDX1 基因导致胰腺发育不全,而异位突变可导致青少年发病型糖尿病 4 型(MODY4)。尽管 Pdx1 在胰岛素产生的β细胞发育和稳态的临床前模型中功能研究得很好,但它如何通过调节下游转录程序来控制人类胰腺发育仍然难以捉摸。此外,目前尚未对胰腺祖细胞和成年β细胞中 PDX1 结合模式进行比较研究。此外,许多研究报道了单核苷酸多态性(SNP)与 T2DM 的相关性,并且已经表明胰岛增强子富含 T2DM 相关 SNP。目前尚未报道含有 T2DM 相关 SNP 的区域是否在胰腺祖细胞阶段被 PDX1 结合并激活。

方法

在这项研究中,我们生成了一种新的诱导多能干细胞(iPSC)系,该系能够有效地分化为人类胰腺祖细胞(PPs)。此外,使用 PDX1 和 H3K27ac 染色质免疫沉淀测序(ChIP-seq)来鉴定 PDX1 的转录靶标和活性增强子和启动子区域。为了解 PDX1 在发育和成年过程中的潜在功能差异,我们比较了 PPs 和成年胰岛中的 PDX1 结合谱。此外,结合 ChIP-seq 和 GWAS 荟萃分析数据,我们确定了 PDX1 结合位点和活性染色质区域中的 T2DM 相关 SNP。

结果

PDX1 的 ChIP-seq 共揭示了 8088 个 PDX1 结合区域,这些区域映射到 iPSC 衍生的 PPs 中的 5664 个基因。PDX1 靶区包括重要的胰腺 TF,如 PDX1 本身、RFX6、HNF1B 和 MEIS1,这些 TF 在分化过程中被激活,如活性染色质标记 H3K27ac 和 mRNA 表达谱所示,这表明自调节反馈调节维持 PDX1 的表达并启动胰腺 TF 程序。值得注意的是,我们鉴定了一些迄今为止在人类文献中尚未报道的 PDX1 靶基因,包括在小鼠中需要进行纤毛发生和内分泌分化的 RFX3,以及 Notch 受体 DLL1 的配体,该配体对于内分泌诱导和尖端-干形模式形成很重要。PPs 和成人胰岛中的 PDX1 图谱的比较确定了一组分别与早期胰腺发育和成年β细胞功能相关的阶段特异性靶基因。此外,我们发现 T2DM 相关 SNP 在 iPSC 衍生的 PPs 中的活性染色质区域中富集。其中两个 SNP 位于 PDX1 占据的位点,这些位点位于 TCF7L2 和 HNF1B 的内含子区域。这两个基因都是内分泌诱导和突变的关键转录调节因子顺式调节区域易患糖尿病。

结论

我们的数据提供了 PDX1 在干细胞向胰腺祖细胞分化过程中的特定阶段靶基因,这可能有助于鉴定导致糖尿病的途径和分子靶标。此外,我们表明 T2DM 相关 SNP 在胰腺祖细胞阶段的活性染色质区域中富集,这表明 T2DM 的易感性可能源于β细胞发育程序的不完善执行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2912/5870105/3afc78865ef9/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验