Bouaziz Juba, Mendes Guimarães Filipe Souza, Lounis Samir
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich, 52425, Germany.
Nat Commun. 2020 Nov 30;11(1):6112. doi: 10.1038/s41467-020-19746-1.
Many-body phenomena are paramount in physics. In condensed matter, their hallmark is considerable on a wide range of material characteristics spanning electronic, magnetic, thermodynamic and transport properties. They potentially imprint non-trivial signatures in spectroscopic measurements, such as those assigned to Kondo, excitonic and polaronic features, whose emergence depends on the involved degrees of freedom. Here, we address systematically zero-bias anomalies detected by scanning tunneling spectroscopy on Co atoms deposited on Cu, Ag and Au(111) substrates, which remarkably are almost identical to those obtained from first-principles. These features originate from gaped spin-excitations induced by a finite magnetic anisotropy energy, in contrast to the usual widespread interpretation relating them to Kondo resonances. Resting on relativistic time-dependent density functional and many-body perturbation theories, we furthermore unveil a new many-body feature, the spinaron, resulting from the interaction of electrons and spin-excitations localizing electronic states in a well defined energy.
多体现象在物理学中至关重要。在凝聚态物质中,它们的标志在跨越电子、磁、热力学和输运性质的广泛材料特性方面相当显著。它们可能在光谱测量中留下非平凡的特征,例如那些归因于近藤、激子和极化子特征的特征,其出现取决于所涉及的自由度。在这里,我们系统地研究了通过扫描隧道光谱在沉积于铜、银和金(111)衬底上的钴原子上检测到的零偏置异常,这些异常显著地几乎与从第一性原理获得的异常相同。这些特征源于由有限磁各向异性能量诱导的带隙自旋激发,这与通常将它们与近藤共振相关联的广泛解释形成对比。基于相对论含时密度泛函和多体微扰理论,我们进一步揭示了一种新的多体特征,即自旋子,它是由电子与自旋激发相互作用产生的,这种相互作用将电子态局域在一个明确的能量范围内。