Suppr超能文献

扫描隧道显微镜诱导的二维半导体激子发光

Scanning Tunneling Microscope-Induced Excitonic Luminescence of a Two-Dimensional Semiconductor.

作者信息

Pommier Delphine, Bretel Rémi, López Luis E Parra, Fabre Florentin, Mayne Andrew, Boer-Duchemin Elizabeth, Dujardin Gérald, Schull Guillaume, Berciaud Stéphane, Le Moal Eric

机构信息

Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France.

Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France.

出版信息

Phys Rev Lett. 2019 Jul 12;123(2):027402. doi: 10.1103/PhysRevLett.123.027402.

Abstract

The long sought-after goal of locally and spectroscopically probing the excitons of two-dimensional (2D) semiconductors is attained using a scanning tunneling microscope (STM). Excitonic luminescence from monolayer molybdenum diselenide (MoSe_{2}) on a transparent conducting substrate is electrically excited in the tunnel junction of an STM under ambient conditions. By comparing the results with photoluminescence measurements, the emission mechanism is identified as the radiative recombination of bright A excitons. STM-induced luminescence is observed at bias voltages as low as those that correspond to the energy of the optical band gap of MoSe_{2}. The proposed excitation mechanism is resonance energy transfer from the tunneling current to the excitons in the semiconductor, i.e., through virtual photon coupling. Additional mechanisms (e.g., charge injection) may come into play at bias voltages that are higher than the electronic band gap. Photon emission quantum efficiencies of up to 10^{-7} photons per electron are obtained, despite the lack of any participating plasmons. Our results demonstrate a new technique for investigating the excitonic and optoelectronic properties of 2D semiconductors and their heterostructures at the nanometer scale.

摘要

利用扫描隧道显微镜(STM)实现了对二维(2D)半导体激子进行局域和光谱探测这一长期追求的目标。在环境条件下,透明导电衬底上单层二硒化钼(MoSe₂)的激子发光在STM的隧道结中被电激发。通过将结果与光致发光测量结果进行比较,确定发射机制为亮A激子的辐射复合。在低至对应于MoSe₂光学带隙能量的偏置电压下观察到STM诱导发光。所提出的激发机制是从隧道电流到半导体中激子的共振能量转移,即通过虚光子耦合。在高于电子带隙的偏置电压下,可能会出现其他机制(例如电荷注入)。尽管没有任何参与的等离子体,但仍获得了高达每电子10⁻⁷个光子的光子发射量子效率。我们的结果展示了一种在纳米尺度上研究二维半导体及其异质结构的激子和光电特性的新技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验