非均匀细化:自适应正则化可改善单颗粒冷冻电镜重构。

Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction.

机构信息

Department of Computer Sciences, University of Toronto, Toronto, Ontario, Canada.

Vector Institute, Toronto, Ontario, Canada.

出版信息

Nat Methods. 2020 Dec;17(12):1214-1221. doi: 10.1038/s41592-020-00990-8. Epub 2020 Nov 30.

Abstract

Cryogenic electron microscopy (cryo-EM) is widely used to study biological macromolecules that comprise regions with disorder, flexibility or partial occupancy. For example, membrane proteins are often kept in solution with detergent micelles and lipid nanodiscs that are locally disordered. Such spatial variability negatively impacts computational three-dimensional (3D) reconstruction with existing iterative refinement algorithms that assume rigidity. We introduce non-uniform refinement, an algorithm based on cross-validation optimization, which automatically regularizes 3D density maps during refinement to account for spatial variability. Unlike common shift-invariant regularizers, non-uniform refinement systematically removes noise from disordered regions, while retaining signal useful for aligning particle images, yielding dramatically improved resolution and 3D map quality in many cases. We obtain high-resolution reconstructions for multiple membrane proteins as small as 100 kDa, demonstrating increased effectiveness of cryo-EM for this class of targets critical in structural biology and drug discovery. Non-uniform refinement is implemented in the cryoSPARC software package.

摘要

低温电子显微镜(cryo-EM)广泛用于研究具有无序、柔性或部分占据的生物大分子。例如,膜蛋白通常与去污剂胶束和脂质纳米盘一起保持在溶液中,这些胶束和脂质纳米盘局部无序。这种空间变异性会对现有的迭代细化算法的计算三维(3D)重建产生负面影响,因为这些算法假设刚性。我们引入了非均匀细化,这是一种基于交叉验证优化的算法,它可以在细化过程中自动对 3D 密度图进行正则化,以考虑空间变异性。与常见的平移不变正则化不同,非均匀细化系统地从无序区域中去除噪声,同时保留对齐粒子图像有用的信号,从而在许多情况下显著提高分辨率和 3D 地图质量。我们对多个小至 100kDa 的膜蛋白进行了高分辨率重建,证明了 cryo-EM 对于结构生物学和药物发现中至关重要的这一类目标的有效性提高。非均匀细化在 cryoSPARC 软件包中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索