Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO, 65211, USA.
BMC Bioinformatics. 2020 Dec 28;21(Suppl 21):534. doi: 10.1186/s12859-020-03885-9.
Cryo-EM data generated by electron tomography (ET) contains images for individual protein particles in different orientations and tilted angles. Individual cryo-EM particles can be aligned to reconstruct a 3D density map of a protein structure. However, low contrast and high noise in particle images make it challenging to build 3D density maps at intermediate to high resolution (1-3 Å). To overcome this problem, we propose a fully automated cryo-EM 3D density map reconstruction approach based on deep learning particle picking.
A perfect 2D particle mask is fully automatically generated for every single particle. Then, it uses a computer vision image alignment algorithm (image registration) to fully automatically align the particle masks. It calculates the difference of the particle image orientation angles to align the original particle image. Finally, it reconstructs a localized 3D density map between every two single-particle images that have the largest number of corresponding features. The localized 3D density maps are then averaged to reconstruct a final 3D density map. The constructed 3D density map results illustrate the potential to determine the structures of the molecules using a few samples of good particles. Also, using the localized particle samples (with no background) to generate the localized 3D density maps can improve the process of the resolution evaluation in experimental maps of cryo-EM. Tested on two widely used datasets, Auto3DCryoMap is able to reconstruct good 3D density maps using only a few thousand protein particle images, which is much smaller than hundreds of thousands of particles required by the existing methods.
We design a fully automated approach for cryo-EM 3D density maps reconstruction (Auto3DCryoMap). Instead of increasing the signal-to-noise ratio by using 2D class averaging, our approach uses 2D particle masks to produce locally aligned particle images. Auto3DCryoMap is able to accurately align structural particle shapes. Also, it is able to construct a decent 3D density map from only a few thousand aligned particle images while the existing tools require hundreds of thousands of particle images. Finally, by using the pre-processed particle images, Auto3DCryoMap reconstructs a better 3D density map than using the original particle images.
电子断层扫描(ET)生成的冷冻电子显微镜数据包含不同取向和倾斜角度的单个蛋白质颗粒的图像。单个冷冻电子显微镜颗粒可以对齐以重建蛋白质结构的 3D 密度图。然而,颗粒图像中的低对比度和高噪声使得在中等至高分辨率(1-3Å)下构建 3D 密度图具有挑战性。为了解决这个问题,我们提出了一种基于深度学习颗粒选择的全自动冷冻电子显微镜 3D 密度图重建方法。
为每个单个颗粒自动生成完美的 2D 颗粒掩模。然后,它使用计算机视觉图像配准算法(图像配准)自动对齐颗粒掩模。它计算颗粒图像取向角度的差异以对齐原始颗粒图像。最后,它在具有最大对应特征数的两个单个颗粒图像之间重建局部化的 3D 密度图。局部化的 3D 密度图然后被平均以重建最终的 3D 密度图。构建的 3D 密度图结果表明,使用少数几个好颗粒样本可以确定分子的结构。此外,使用局部化的颗粒样本(无背景)生成局部化的 3D 密度图可以提高冷冻电子显微镜实验图谱的分辨率评估过程。在两个广泛使用的数据集上进行测试,Auto3DCryoMap 能够使用仅几千个蛋白质颗粒图像重建良好的 3D 密度图,这比现有方法所需的几十万颗粒小得多。
我们设计了一种全自动的冷冻电子显微镜 3D 密度图重建方法(Auto3DCryoMap)。我们的方法不是通过使用 2D 类平均来增加信号与噪声比,而是使用 2D 颗粒掩模来产生局部对齐的颗粒图像。Auto3DCryoMap 能够准确地对齐结构颗粒形状。此外,它能够仅使用几千个对齐的颗粒图像构建良好的 3D 密度图,而现有工具则需要几十万颗粒图像。最后,通过使用预处理的颗粒图像,Auto3DCryoMap 重建的 3D 密度图优于使用原始颗粒图像。