Turner Andrew M, Kaiser Ralf I
Department of Chemistry and W.M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States.
Acc Chem Res. 2020 Dec 15;53(12):2791-2805. doi: 10.1021/acs.accounts.0c00584. Epub 2020 Dec 1.
ConspectusThis Account presents recent advances in our understanding on the formation pathways of complex organic molecules (COMs) within interstellar analog ices on ice-coated interstellar nanoparticles upon interaction with ionizing radiation exploiting reflectron time-of-flight mass spectrometry (ReTOF-MS) coupled with tunable vacuum ultraviolet (VUV) single photon ionization (PI) and resonance enhanced multiphoton ionization (REMPI) of the subliming molecules during the temperature-programmed desorption (TPD) phase. Laboratory simulation experiments provided compelling evidence that key classes of complex organics (aromatic hydrocarbons, alcohols, ethers, aldehydes, enols, ketones, and carboxylic acids) can be synthesized upon exposure of astrophysically relevant model ices to ionizing radiation and the ices at temperatures as low as 5 K.Molecular mass growth processes can be initiated by suprathermal or electronically excited reactants along with barrierless radical-radical recombination if both radicals hold a proper recombination geometry. Methyl (CH), amino (NH), hydroxyl (OH), ethyl (CH), vinyl (CH), ethynyl (CH), formyl (HCO), hydroxycarbonyl (HOCO), hydroxymethyl (CHOH), methoxy (CHO), and acetyl (CHCO) represent readily available reactants for the ices. Reactive singlet species were found to without barrier into carbon-hydrogen and carbon-carbon single bonds (carbene) leading to an extension of the carbon chain and may to carbon-carbon double bonds (carbene, atomic oxygen) forming cyclic reaction products. These galactic cosmic ray-triggered nonequilibrium pathways overcome previous obstacles of hypothesized thermal grain-surface processes and operate at 5 K. Our investigations discriminate between multiple structural isomers such as alcohols/ethers, aldehydes/enols, and cyclic/acyclic carbonyls. These data provide quantitative, input parameters for a cosmic ray-dictated formation of complex organics in interstellar ices and are fully able to replicate the astronomical observations of complex organics over typical lifetimes of molecular clouds of a few 10 to 10 years. Overall, PI-ReTOF-MS revealed that the processing of astrophysically relevant ices can lead to multifaceted mixtures of organics reaching molecular weights of up to 200 amu. Further advances in laboratory techniques beyond the FTIR-QMS limit are clearly desired not only to confidently assign detection in laboratory ice analog experiments of increasingly more complex molecules of interest but also from the viewpoint of future astronomical searches in the age of the Atacama Large Millimeter/submillimeter Array (ALMA).
概述
本综述介绍了我们对星际类似冰中复杂有机分子(COM)形成途径的最新认识。这些冰包裹在星际纳米颗粒上,与电离辐射相互作用时,利用反射式飞行时间质谱(ReTOF-MS),结合在程序升温脱附(TPD)阶段升华分子的可调谐真空紫外(VUV)单光子电离(PI)和共振增强多光子电离(REMPI)。实验室模拟实验提供了令人信服的证据,表明关键类别的复杂有机物(芳烃、醇类、醚类、醛类、烯醇类、酮类和羧酸类)可以在与天体物理相关的模型冰暴露于电离辐射时合成,且在低至5K的温度下也能合成。分子质量增长过程可以由超热或电子激发反应物引发,并且如果两个自由基具有合适的重组几何结构,还可以通过无障碍的自由基 - 自由基重组来实现。甲基(CH)、氨基(NH)、羟基(OH)、乙基(CH)、乙烯基(CH)、乙炔基(CH)、甲酰基(HCO)、羟羰基(HOCO)、羟甲基(CHOH)、甲氧基(CHO)和乙酰基(CHCO)是冰中的现成反应物。发现反应性单线态物种能够无障碍地形成碳 - 氢和碳 - 碳单键(卡宾),从而导致碳链的延伸,并且可能形成碳 - 碳双键(卡宾、原子氧),形成环状反应产物。这些由银河宇宙射线触发的非平衡途径克服了先前假设的热颗粒表面过程的障碍,并在5K下运行。我们的研究区分了多种结构异构体,如醇类/醚类、醛类/烯醇类和环状/非环状羰基化合物。这些数据为星际冰中由宇宙射线决定的复杂有机物形成提供了定量的输入参数,并且完全能够复制在分子云典型寿命(从几十万年到几百万年)期间对复杂有机物的天文观测。总体而言,PI - ReTOF - MS表明,与天体物理相关的冰的处理可以导致分子量高达200amu的多方面有机混合物。显然,不仅为了在实验室冰模拟实验中自信地确定对越来越多感兴趣的复杂分子的检测,而且从阿塔卡马大型毫米波/亚毫米波阵列(ALMA)时代未来天文搜索的角度来看,都迫切需要超越傅里叶变换红外光谱 - 四极质谱(FTIR - QMS)极限的实验室技术的进一步发展。