Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.
National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States.
J Phys Chem A. 2020 Dec 10;124(49):10312-10323. doi: 10.1021/acs.jpca.0c06372. Epub 2020 Dec 1.
Nuclear electric field gradient (EFG) tensor parameters depend strongly on electronic structures, making their calculation from first principles an excellent metric for the prediction, refinement, and optimization of crystal structures. Here, we use plane-wave density functional theory (DFT) calculations of EFG tensors in organic solids to optimize the Grimme (D2) and Tkatchenko-Scheffler (TS) atomic-pairwise force field dispersion corrections. Refinements using these new force field correction methods result in better representations of true crystal structures, as gauged by calculations of 177 N, O, and Cl EFG tensors from 95 materials. The most striking result is the degree by which calculations of Cl EFG tensors of chloride ions match with experiment, due to the ability of these new methods to properly locate the positions of hydrogen atoms participating in H···Cl hydrogen bonds. These refined structures also feature atomic coordinates that are more similar to those of neutron diffraction structures than those obtained from calculations that do not employ the optimized force fields. Additionally, we assess the quality of these new energy-minimization protocols for the prediction of N magnetic shielding tensors and unit cell volumes, which complement the larger analysis using EFG tensors, since these quantities have different physical origins. It is hoped that these results will be useful in future nuclear magnetic resonance (NMR) crystallographic studies and will be of great interest to a wide variety of researchers, in fields including NMR spectroscopy, computational chemistry, crystallography, pharmaceutical sciences, and crystal engineering.
核电场梯度(EFG)张量参数强烈依赖于电子结构,因此从第一性原理计算 EFG 张量是预测、改进和优化晶体结构的极好指标。在这里,我们使用有机固体中的平面波密度泛函理论(DFT)计算 EFG 张量,以优化 Grimme(D2)和 Tkatchenko-Scheffler(TS)原子对力场色散校正。使用这些新的力场修正方法进行的细化导致对真实晶体结构的更好表示,这可以通过从 95 种材料计算 177 个 N、O 和 Cl EFG 张量来衡量。最引人注目的结果是氯离子的 Cl EFG 张量的计算与实验匹配的程度,这是由于这些新方法能够正确定位参与 H···Cl 氢键的氢原子的位置。这些细化的结构还具有与中子衍射结构更相似的原子坐标,而不是那些不使用优化力场的计算得到的原子坐标。此外,我们评估了这些新的能量最小化协议在预测 N 磁屏蔽张量和晶胞体积方面的质量,这些协议补充了使用 EFG 张量的更大分析,因为这些量具有不同的物理起源。希望这些结果将有助于未来的核磁共振(NMR)晶体学研究,并将引起包括 NMR 光谱学、计算化学、晶体学、药物科学和晶体工程在内的广泛领域的研究人员的极大兴趣。