Suppr超能文献

表型谱聚类实用地确定了慢性疼痛患者具有诊断和机制信息的亚组。

Phenotypic profile clustering pragmatically identifies diagnostically and mechanistically informative subgroups of chronic pain patients.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States.

Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, NC, United States.

出版信息

Pain. 2021 May 1;162(5):1528-1538. doi: 10.1097/j.pain.0000000000002153.

Abstract

Traditional classification and prognostic approaches for chronic pain conditions focus primarily on anatomically based clinical characteristics not based on underlying biopsychosocial factors contributing to perception of clinical pain and future pain trajectories. Using a supervised clustering approach in a cohort of temporomandibular disorder cases and controls from the Orofacial Pain: Prospective Evaluation and Risk Assessment study, we recently developed and validated a rapid algorithm (ROPA) to pragmatically classify chronic pain patients into 3 groups that differed in clinical pain report, biopsychosocial profiles, functional limitations, and comorbid conditions. The present aim was to examine the generalizability of this clustering procedure in 2 additional cohorts: a cohort of patients with chronic overlapping pain conditions (Complex Persistent Pain Conditions study) and a real-world clinical population of patients seeking treatment at duke innovative pain therapies. In each cohort, we applied a ROPA for cluster prediction, which requires only 4 input variables: pressure pain threshold and anxiety, depression, and somatization scales. In both complex persistent pain condition and duke innovative pain therapies, we distinguished 3 clusters, including one with more severe clinical characteristics and psychological distress. We observed strong concordance with observed cluster solutions, indicating the ROPA method allows for reliable subtyping of clinical populations with minimal patient burden. The ROPA clustering algorithm represents a rapid and valid stratification tool independent of anatomic diagnosis. ROPA holds promise in classifying patients based on pathophysiological mechanisms rather than structural or anatomical diagnoses. As such, this method of classifying patients will facilitate personalized pain medicine for patients with chronic pain.

摘要

传统的慢性疼痛状况分类和预后方法主要侧重于基于解剖学的临床特征,而不是基于导致临床疼痛感知和未来疼痛轨迹的潜在生物心理社会因素。我们最近在来自口腔颌面疼痛:前瞻性评估和风险评估研究的颞下颌关节紊乱病例和对照组中使用监督聚类方法,开发并验证了一种快速算法 (ROPA),该算法可以将慢性疼痛患者实用地分为 3 组,这些组在临床疼痛报告、生物心理社会特征、功能限制和合并症方面存在差异。本研究旨在检验该聚类程序在另外 2 个队列中的通用性:一个慢性重叠疼痛状况的队列(复杂持续性疼痛状况研究)和一个在杜克创新疼痛治疗中寻求治疗的真实临床患者人群。在每个队列中,我们应用了 ROPA 进行聚类预测,该方法仅需要 4 个输入变量:压痛阈值和焦虑、抑郁和躯体化量表。在复杂持续性疼痛状况和杜克创新疼痛治疗中,我们区分了 3 个聚类,包括一个具有更严重临床特征和心理困扰的聚类。我们观察到与观察到的聚类解决方案具有很强的一致性,表明 ROPA 方法允许对临床人群进行可靠的亚组划分,而患者负担最小。ROPA 聚类算法是一种快速有效的分层工具,独立于解剖诊断。ROPA 有望根据病理生理机制而不是结构或解剖诊断来对患者进行分类。因此,这种分类患者的方法将为慢性疼痛患者提供个性化的疼痛医学。

相似文献

引用本文的文献

10
Recent Advances in Temporomandibular Joint Surgery.颞下颌关节手术的最新进展。
Medicina (Kaunas). 2023 Aug 2;59(8):1409. doi: 10.3390/medicina59081409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验