Suppr超能文献

计算卸载在认知车联网与车联网云计算和远程云计算。

Computation Offloading in a Cognitive Vehicular Networks with Vehicular Cloud Computing and Remote Cloud Computing.

机构信息

Beijing Laboratory of Advanced Information Networks, Beijing University of Posts and Telecommunications, Beijing 100876, China.

出版信息

Sensors (Basel). 2020 Nov 29;20(23):6820. doi: 10.3390/s20236820.

Abstract

To satisfy the explosive growth of computation-intensive vehicular applications, we investigated the computation offloading problem in a cognitive vehicular networks (CVN). Specifically, in our scheme, the vehicular cloud computing (VCC)- and remote cloud computing (RCC)-enabled computation offloading were jointly considered. So far, extensive research has been conducted on RCC-based computation offloading, while the studies on VCC-based computation offloading are relatively rare. In fact, due to the dynamic and uncertainty of on-board resource, the VCC-based computation offloading is more challenging then the RCC one, especially under the vehicular scenario with expensive inter-vehicle communication or poor communication environment. To solve this problem, we propose to leverage the VCC's computation resource for computation offloading with a perception-exploitation way, which mainly comprise resource discovery and computation offloading two stages. In resource discovery stage, upon the action-observation history, a Long Short-Term Memory (LSTM) model is proposed to predict the on-board resource utilizing status at next time slot. Thereafter, based on the obtained computation resource distribution, a decentralized multi-agent Deep Reinforcement Learning (DRL) algorithm is proposed to solve the collaborative computation offloading with VCC and RCC. Last but not least, the proposed algorithms' effectiveness is verified with a host of numerical simulation results from different perspectives.

摘要

为满足计算密集型车载应用的爆炸式增长,我们研究了认知车联网 (CVN) 中的计算卸载问题。具体来说,在我们的方案中,联合考虑了车载云计算 (VCC) 和远程云计算 (RCC) 支持的计算卸载。到目前为止,已经对基于 RCC 的计算卸载进行了广泛的研究,而基于 VCC 的计算卸载的研究相对较少。事实上,由于车载资源的动态性和不确定性,VCC 支持的计算卸载比 RCC 更具挑战性,尤其是在车载场景中存在昂贵的车车间通信或较差的通信环境时。为了解决这个问题,我们提出了一种感知利用的方法,利用 VCC 的计算资源进行计算卸载,主要包括资源发现和计算卸载两个阶段。在资源发现阶段,根据动作观测历史,提出了一种长短期记忆 (LSTM) 模型来预测下一时间段的车载资源利用状态。然后,根据获得的计算资源分布,提出了一种分散式多智能体深度强化学习 (DRL) 算法来解决 VCC 和 RCC 的协同计算卸载问题。最后,但并非最不重要的是,从不同角度的大量数值模拟结果验证了所提出算法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1c/7730087/7a0b2e79d9bf/sensors-20-06820-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验