Suppr超能文献

UAPF:一种用于特征较少场景的 UWB 辅助粒子滤波定位方法。

UAPF: A UWB Aided Particle Filter Localization For Scenarios with Few Features.

机构信息

School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Sensors (Basel). 2020 Nov 28;20(23):6814. doi: 10.3390/s20236814.

Abstract

Lidar-based localization doesn't have high accuracy in open scenarios with few features, and behaves poorly in robot kidnap recovery. To address this problem, an improved Particle Filter localization is proposed who could achieve robust robot kidnap detection and pose error compensation. UAPF adaptively updates the covariance by Jacobian from Ultra-wide Band information instead of predetermined parameters, and determines whether robot kidnap occurs by a novel criterion called KNP (Kidnap Probability). Besides, pose fusion of ranging-based localization and PF-based localization is conducted to decrease the uncertainty. To achieve more accurate ranging-based localization, linear regression of ranging data adopts values of maximum probability rather than average distances. Experiments show UAPF can achieve robot kidnap recovery in less than 2 s and position error is less than 0.1 m in a hall of 40 by 15 m, when the currently prevalent lidar-based localization costs more than 90 s and converges to wrong position.

摘要

基于激光雷达的定位在特征较少的开阔场景中精度不高,在机器人绑架恢复方面表现不佳。针对这个问题,提出了一种改进的粒子滤波定位方法,能够实现鲁棒的机器人绑架检测和姿态误差补偿。UAPF 通过从超宽带信息中的雅可比矩阵自适应地更新协方差,而不是预定参数,并通过一种称为 KNP(绑架概率)的新准则来确定是否发生机器人绑架。此外,进行基于测距的定位和基于 PF 的定位的姿态融合,以降低不确定性。为了实现更精确的基于测距的定位,采用最大概率值而不是平均距离对测距数据进行线性回归。实验表明,在 40 米×15 米的大厅中,UAPF 可以在 2 秒内实现机器人绑架恢复,位置误差小于 0.1 米,而目前流行的基于激光雷达的定位需要 90 多秒,并且会收敛到错误的位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bae/7730271/7acca1af9645/sensors-20-06814-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验