Suppr超能文献

GPU 加速的 MV-CBCT 蒙特卡罗模拟。

GPU-accelerated Monte Carlo simulation of MV-CBCT.

机构信息

Medical Physics Program, Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, United States of America. Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America.

出版信息

Phys Med Biol. 2020 Dec 2;65(23):235042. doi: 10.1088/1361-6560/abaeba.

Abstract

Monte Carlo simulation (MCS) is one of the most accurate computation methods for dose calculation and image formation in radiation therapy. However, the high computational complexity and long execution time of MCS limits its broad use. In this paper, we present a novel strategy to accelerate MCS using a graphic processing unit (GPU), and we demonstrate the application in mega-voltage (MV) cone-beam computed tomography (CBCT) simulation. A new framework that generates a series of MV projections from a single simulation run is designed specifically for MV-CBCT acquisition. A Geant4-based GPU code for photon simulation is incorporated into the framework for the simulation of photon transport through a phantom volume. The FastEPID method, which accelerates the simulation of MV images, is modified and integrated into the framework. The proposed GPU-based simulation strategy was tested for its accuracy and efficiency in a Catphan 604 phantom and an anthropomorphic pelvis phantom with beam energies at 2.5 MV, 6 MV, and 6 MV FFF. In all cases, the proposed GPU-based simulation demonstrated great simulation accuracy and excellent agreement with measurement and CPU-based simulation in terms of reconstructed image qualities. The MV-CBCT simulation was accelerated by factors of roughly 900-2300 using an NVIDIA Tesla V100 GPU card against a 2.5 GHz AMD Opteron™ Processor 6380.

摘要

蒙特卡罗模拟(MCS)是放射治疗中剂量计算和图像形成最准确的计算方法之一。然而,MCS 的计算复杂性高和执行时间长限制了其广泛应用。在本文中,我们提出了一种使用图形处理单元(GPU)加速 MCS 的新策略,并展示了在兆伏(MV)锥形束计算机断层扫描(CBCT)模拟中的应用。我们专门为 MV-CBCT 采集设计了一种从单次模拟运行生成一系列 MV 投影的新框架。基于 Geant4 的光子模拟 GPU 代码被纳入框架中,用于模拟光子通过体模的传输。FastEPID 方法用于加速 MV 图像的模拟,被修改并集成到框架中。在 Catphan 604 体模和具有 2.5 MV、6 MV 和 6 MV FFF 束能的人体骨盆体模中对提出的基于 GPU 的模拟策略进行了准确性和效率测试。在所有情况下,与测量值和基于 CPU 的模拟相比,基于 GPU 的模拟在重建图像质量方面表现出了很好的模拟准确性和极好的一致性。使用 NVIDIA Tesla V100 GPU 卡,与 2.5 GHz AMD OpteronTM Processor 6380 相比,MV-CBCT 模拟的加速因子约为 900-2300。

相似文献

1
GPU-accelerated Monte Carlo simulation of MV-CBCT.GPU 加速的 MV-CBCT 蒙特卡罗模拟。
Phys Med Biol. 2020 Dec 2;65(23):235042. doi: 10.1088/1361-6560/abaeba.
4
fastCAT: Fast cone beam CT (CBCT) simulation.快速锥束 CT(CBCT)模拟。
Med Phys. 2021 Aug;48(8):4448-4458. doi: 10.1002/mp.15007. Epub 2021 Jun 28.
5
GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.基于 GPU 的放射治疗剂量计算快速蒙特卡罗模拟。
Phys Med Biol. 2011 Nov 21;56(22):7017-31. doi: 10.1088/0031-9155/56/22/002. Epub 2011 Oct 21.

引用本文的文献

本文引用的文献

1
Automated MV markerless tumor tracking for VMAT.自动 MV 无标记肿瘤追踪用于 VMAT。
Phys Med Biol. 2020 Jun 22;65(12):125011. doi: 10.1088/1361-6560/ab8cd3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验