Suppr超能文献

GPU 加速的 MV-CBCT 蒙特卡罗模拟。

GPU-accelerated Monte Carlo simulation of MV-CBCT.

机构信息

Medical Physics Program, Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, United States of America. Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America.

出版信息

Phys Med Biol. 2020 Dec 2;65(23):235042. doi: 10.1088/1361-6560/abaeba.

Abstract

Monte Carlo simulation (MCS) is one of the most accurate computation methods for dose calculation and image formation in radiation therapy. However, the high computational complexity and long execution time of MCS limits its broad use. In this paper, we present a novel strategy to accelerate MCS using a graphic processing unit (GPU), and we demonstrate the application in mega-voltage (MV) cone-beam computed tomography (CBCT) simulation. A new framework that generates a series of MV projections from a single simulation run is designed specifically for MV-CBCT acquisition. A Geant4-based GPU code for photon simulation is incorporated into the framework for the simulation of photon transport through a phantom volume. The FastEPID method, which accelerates the simulation of MV images, is modified and integrated into the framework. The proposed GPU-based simulation strategy was tested for its accuracy and efficiency in a Catphan 604 phantom and an anthropomorphic pelvis phantom with beam energies at 2.5 MV, 6 MV, and 6 MV FFF. In all cases, the proposed GPU-based simulation demonstrated great simulation accuracy and excellent agreement with measurement and CPU-based simulation in terms of reconstructed image qualities. The MV-CBCT simulation was accelerated by factors of roughly 900-2300 using an NVIDIA Tesla V100 GPU card against a 2.5 GHz AMD Opteron™ Processor 6380.

摘要

蒙特卡罗模拟(MCS)是放射治疗中剂量计算和图像形成最准确的计算方法之一。然而,MCS 的计算复杂性高和执行时间长限制了其广泛应用。在本文中,我们提出了一种使用图形处理单元(GPU)加速 MCS 的新策略,并展示了在兆伏(MV)锥形束计算机断层扫描(CBCT)模拟中的应用。我们专门为 MV-CBCT 采集设计了一种从单次模拟运行生成一系列 MV 投影的新框架。基于 Geant4 的光子模拟 GPU 代码被纳入框架中,用于模拟光子通过体模的传输。FastEPID 方法用于加速 MV 图像的模拟,被修改并集成到框架中。在 Catphan 604 体模和具有 2.5 MV、6 MV 和 6 MV FFF 束能的人体骨盆体模中对提出的基于 GPU 的模拟策略进行了准确性和效率测试。在所有情况下,与测量值和基于 CPU 的模拟相比,基于 GPU 的模拟在重建图像质量方面表现出了很好的模拟准确性和极好的一致性。使用 NVIDIA Tesla V100 GPU 卡,与 2.5 GHz AMD OpteronTM Processor 6380 相比,MV-CBCT 模拟的加速因子约为 900-2300。

相似文献

1
GPU-accelerated Monte Carlo simulation of MV-CBCT.
Phys Med Biol. 2020 Dec 2;65(23):235042. doi: 10.1088/1361-6560/abaeba.
2
A rapid, accurate image simulation strategy for mega-voltage cone-beam computed tomography.
Phys Med Biol. 2020 Jul 6;65(13):135004. doi: 10.1088/1361-6560/ab868a.
3
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
Phys Med Biol. 2015 Oct 7;60(19):7419-35. doi: 10.1088/0031-9155/60/19/7419. Epub 2015 Sep 9.
4
fastCAT: Fast cone beam CT (CBCT) simulation.
Med Phys. 2021 Aug;48(8):4448-4458. doi: 10.1002/mp.15007. Epub 2021 Jun 28.
5
GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
Phys Med Biol. 2011 Nov 21;56(22):7017-31. doi: 10.1088/0031-9155/56/22/002. Epub 2011 Oct 21.
6
Scatter correction based on adaptive photon path-based Monte Carlo simulation method in Multi-GPU platform.
Comput Methods Programs Biomed. 2020 Oct;194:105487. doi: 10.1016/j.cmpb.2020.105487. Epub 2020 May 11.
7
GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4.
Phys Med Biol. 2012 Mar 7;57(5):1217-29. doi: 10.1088/0031-9155/57/5/1217. Epub 2012 Feb 14.
9
Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport.
Phys Med Biol. 2010 Jun 7;55(11):3077-86. doi: 10.1088/0031-9155/55/11/006. Epub 2010 May 12.
10
Fast Monte Carlo simulation for patient-specific CT/CBCT imaging dose calculation.
Phys Med Biol. 2012 Feb 7;57(3):577-90. doi: 10.1088/0031-9155/57/3/577. Epub 2012 Jan 6.

引用本文的文献

1
Impact of a novel multilayer imager on metal artifacts in MV-CBCT.
Phys Med Biol. 2023 Jul 10;68(14). doi: 10.1088/1361-6560/ace09a.

本文引用的文献

1
Automated MV markerless tumor tracking for VMAT.
Phys Med Biol. 2020 Jun 22;65(12):125011. doi: 10.1088/1361-6560/ab8cd3.
2
A rapid, accurate image simulation strategy for mega-voltage cone-beam computed tomography.
Phys Med Biol. 2020 Jul 6;65(13):135004. doi: 10.1088/1361-6560/ab868a.
3
A novel method for fast image simulation of flat panel detectors.
Phys Med Biol. 2019 Apr 29;64(9):095019. doi: 10.1088/1361-6560/ab12aa.
4
Characterizing a novel scintillating glass for application to megavoltage cone-beam computed tomography.
Med Phys. 2019 Mar;46(3):1323-1330. doi: 10.1002/mp.13355. Epub 2019 Feb 14.
5
Feasibility of closed-MLC tracking using high sensitivity and multi-layer electronic portal imagers.
Phys Med Biol. 2018 Dec 6;63(23):235030. doi: 10.1088/1361-6560/aaef60.
6
A Monte Carlo study of the impact of phosphor optical properties on EPID imaging performance.
Phys Med Biol. 2018 Aug 20;63(16):165013. doi: 10.1088/1361-6560/aad647.
7
A novel multilayer MV imager computational model for component optimization.
Med Phys. 2017 Aug;44(8):4213-4222. doi: 10.1002/mp.12382. Epub 2017 Jun 28.
8
A novel EPID design for enhanced contrast and detective quantum efficiency.
Phys Med Biol. 2016 Sep 7;61(17):6297-306. doi: 10.1088/0031-9155/61/17/6297. Epub 2016 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验