Suppr超能文献

一种基于GPU OpenCL的跨平台蒙特卡洛剂量计算引擎(goMC)。

A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

作者信息

Tian Zhen, Shi Feng, Folkerts Michael, Qin Nan, Jiang Steve B, Jia Xun

机构信息

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Phys Med Biol. 2015 Oct 7;60(19):7419-35. doi: 10.1088/0031-9155/60/19/7419. Epub 2015 Sep 9.

Abstract

Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.

摘要

蒙特卡罗(MC)模拟已被公认为放射治疗中最精确的剂量计算方法。然而,极长的计算时间阻碍了其临床应用。近年来,人们为在图形处理单元(GPU)上实现快速MC剂量计算付出了诸多努力。然而,大多数基于GPU的MC剂量引擎是在英伟达的CUDA环境下开发的。这限制了代码在其他平台上的可移植性,阻碍了基于GPU的MC模拟在临床实践中的应用。本文的目的是开发一种基于GPU OpenCL的跨平台MC剂量引擎,名为goMC,用于在MeV能量范围内对外部光子和电子放疗进行光子 - 电子耦合模拟。与我们之前开发的基于GPU的MC代码gDPM(Jia等人,2012年,《物理医学与生物学》,第57卷,7783 - 7797页)相比,goMC有两个主要区别。首先,它是在OpenCL环境下开发的,具有较高的代码可移植性,因此不仅可以在不同的GPU卡上运行,还可以在CPU平台上运行。其次,我们在新的剂量引擎中采用了EGSnrc MC软件包中使用的电子传输模型和PENELOPE的随机铰链方法,而不是gDPM中使用的数据规划方法。在均匀水体模、水 - 骨 - 肺 - 水平板体模和半平板体模中计算了15 MeV电子束和6 MV光子束的剂量分布。在所有情况下,观察到goMC和gDPM这两个MC剂量引擎之间具有令人满意的一致性。对于电子束情况,在接受剂量高于最大剂量10%的区域,平均剂量差异为0.48 - 0.53%;对于光子束情况,平均剂量差异为0.15 - 0.17%。在效率方面,由于电子传输模型和开发环境不同,在我们测试的所有情况下,当在同一英伟达TITAN卡上运行时,goMC比gDPM慢约4 - 16%。通过在包括英伟达GPU卡、两块AMD GPU卡和英特尔CPU处理器在内的各种不同计算设备上成功运行,验证了我们新剂量引擎goMC的代码可移植性。并比较了这些平台之间的计算效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验