Institut für Pharmazeutische Chemie, Philipps Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany.
J Chem Inf Model. 2020 Dec 28;60(12):6654-6665. doi: 10.1021/acs.jcim.0c01133. Epub 2020 Dec 2.
Water molecules and their impact on the enthalpy and entropy of protein-ligand binding are of considerable interest in drug discovery. In this contribution, we use multiobjective optimization to fit the solvent enthalpy and entropy scoring terms of grid inhomogeneous solvation theory (GIST)-based solvent functionals to measured isothermal titration calorimetry (ITC) data of protein-ligand-binding reactions for ligand pairs of the protein thrombin. For the investigated ligand pairs, the overwhelming contribution to the relative binding affinity difference is assumed to be attributed to the contribution of water molecules. We present different implementations of the solvent functionals and then proceed by analyzing the most successful one in more detail through error assessment and presentation of the scoring regions in the binding pocket and the unbound ligands of selected examples. We find overall good agreement between calculated and experimental data and, although physically not fully justified, the ligand-desolvation score increases binding affinity, thus suggesting that the solvent molecules on the surface of the unbound ligand constitute a proxy for interactions gained through the protein. Furthermore, we find limited transferability of the parameters even between similar protein targets, thus suggesting refitting for each new protein target. Possible reasons for the limited transferability may arise through the initial assumption of dominating water contributions to binding affinity. Nonetheless, overall our study demonstrates a consistent approach to assign thermodynamic quantities to water molecules that is sensible to measured thermodynamic signatures and enables bridging the gap between experimentally determined water positions in protein-ligand complexes and measured thermodynamic data.
水分子及其对蛋白质-配体结合焓和熵的影响在药物发现中具有重要意义。在本研究中,我们使用多目标优化方法来拟合基于网格不均匀溶剂化理论(GIST)的溶剂函数的溶剂焓和熵评分项,以拟合蛋白质-配体结合反应的等温滴定量热法(ITC)数据。对于所研究的配体对,假定水分子的贡献是相对结合亲和力差异的主要原因。我们提出了不同的溶剂函数实现方式,然后通过误差评估和在结合口袋和选定示例的未结合配体中呈现评分区域来更详细地分析最成功的一个。我们发现计算数据与实验数据之间总体上具有良好的一致性,尽管从物理上看并不完全合理,但配体去溶剂化分数增加了结合亲和力,这表明未结合配体表面的溶剂分子构成了通过蛋白质获得的相互作用的替代物。此外,我们发现即使在相似的蛋白质靶标之间,参数的可转移性也有限,因此建议为每个新的蛋白质靶标重新拟合。可转移性有限的可能原因是最初假设水对结合亲和力的贡献占主导地位。尽管如此,我们的研究总体上展示了一种将热力学量分配给水分子的一致方法,该方法对测量的热力学特征敏感,并能够弥合在蛋白质-配体复合物中测量的水分子位置与测量的热力学数据之间的差距。