Suppr超能文献

研究巨噬细胞对癌症恶病质影响的临床前模型。

Preclinical Models for Studying the Impact of Macrophages on Cancer Cachexia.

机构信息

The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.

出版信息

Curr Protoc Pharmacol. 2020 Dec;91(1):e80. doi: 10.1002/cpph.80.

Abstract

Cancer-associated cachexia is defined by loss of weight and muscle mass, and by the potential loss of adipose tissue accompanied by insulin resistance and increased resting energy expenditure. Cachexia is most prevalent in pancreatic cancer, the third leading cause of cancer-related deaths. While various factors interact to induce cachexia, the precise mechanisms underlying this clinical condition are not fully understood. Clinically relevant animal models of cachexia are needed given the lack of standard diagnostic methods or treatments for this condition. Described in this article are in vitro and in vivo models used to study the role of macrophages in the induction of cachexia in pancreatic cancer. Included are procedures for isolating and culturing bone marrow-derived macrophages, harvesting tumor- and macrophage-derived conditioned medium, and studying the effect of conditioned medium on C2C12 myotubes. Also described are procedures involving the use of an orthotopic model of pancreatic cancer, including a method for examining skeletal muscle atrophy in this model. © 2020 Wiley Periodicals LLC. Basic Protocol 1: In vitro model of pancreatic tumor-induced cachexia using C2C12 cell lines (myotube model) Support Protocol 1: Molecular evaluation of cachectic markers in C2C12 myotubes using real-time PCR and immunoblotting Basic Protocol 2: In vivo model to study cachectic phenotype in pancreatic tumor-bearing mice Support Protocol 2: Evaluation of cachectic markers in the skeletal muscle of tumor-bearing mice.

摘要

癌症相关性恶病质的定义为体重和肌肉量减少,以及可能伴随胰岛素抵抗和静息能量消耗增加的脂肪组织损失。恶病质最常见于胰腺癌,是癌症相关死亡的第三大主要原因。虽然各种因素相互作用导致恶病质,但这种临床情况的确切机制尚不完全清楚。鉴于缺乏针对这种疾病的标准诊断方法或治疗方法,需要有临床相关的恶病质动物模型。本文描述了用于研究巨噬细胞在诱导胰腺癌恶病质中作用的体外和体内模型。包括分离和培养骨髓来源的巨噬细胞、收获肿瘤和巨噬细胞来源的条件培养基以及研究条件培养基对 C2C12 肌管的影响的程序。还描述了涉及使用胰腺癌原位模型的程序,包括在该模型中检查骨骼肌萎缩的方法。© 2020 Wiley Periodicals LLC. 基本方案 1:使用 C2C12 细胞系(肌管模型)的体外胰腺癌诱导恶病质模型 支持方案 1:使用实时 PCR 和免疫印迹法对 C2C12 肌管中的恶病质标志物进行分子评估 基本方案 2:研究胰腺癌荷瘤小鼠恶病质表型的体内模型 支持方案 2:评估荷瘤小鼠骨骼肌中的恶病质标志物。

相似文献

1
Preclinical Models for Studying the Impact of Macrophages on Cancer Cachexia.
Curr Protoc Pharmacol. 2020 Dec;91(1):e80. doi: 10.1002/cpph.80.
2
Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.
Am J Physiol Cell Physiol. 2016 Jul 1;311(1):C101-15. doi: 10.1152/ajpcell.00344.2015. Epub 2016 Apr 27.
3
Molecular and Physiological Evaluation of Pancreatic Cancer-Induced Cachexia.
Methods Mol Biol. 2019;1882:321-333. doi: 10.1007/978-1-4939-8879-2_28.
4
Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia.
Cancer Lett. 2020 Aug 1;484:29-39. doi: 10.1016/j.canlet.2020.04.017. Epub 2020 Apr 25.
5
Cryptotanshinone prevents muscle wasting in CT26-induced cancer cachexia through inhibiting STAT3 signaling pathway.
J Ethnopharmacol. 2020 Oct 5;260:113066. doi: 10.1016/j.jep.2020.113066. Epub 2020 Jun 4.
6
IL-17A contributes to skeletal muscle atrophy in lung cancer-induced cachexia via JAK2/STAT3 pathway.
Am J Physiol Cell Physiol. 2022 May 1;322(5):C814-C824. doi: 10.1152/ajpcell.00463.2021. Epub 2022 Mar 23.
7
Alantolactone ameliorates cancer cachexia-associated muscle atrophy mainly by inhibiting the STAT3 signaling pathway.
Phytomedicine. 2022 Jan;95:153858. doi: 10.1016/j.phymed.2021.153858. Epub 2021 Nov 15.

引用本文的文献

1
The crosstalk between macrophages and cancer cells potentiates pancreatic cancer cachexia.
Cancer Cell. 2024 May 13;42(5):885-903.e4. doi: 10.1016/j.ccell.2024.03.009. Epub 2024 Apr 11.
2
Review of the endocrine organ-like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma.
Front Oncol. 2022 Nov 17;12:1057930. doi: 10.3389/fonc.2022.1057930. eCollection 2022.
3
HDAC4 Knockdown Alleviates Denervation-Induced Muscle Atrophy by Inhibiting Myogenin-Dependent Atrogene Activation.
Front Cell Neurosci. 2021 Jun 30;15:663384. doi: 10.3389/fncel.2021.663384. eCollection 2021.
4
Modeling pancreatic cancer in mice for experimental therapeutics.
Biochim Biophys Acta Rev Cancer. 2021 Aug;1876(1):188554. doi: 10.1016/j.bbcan.2021.188554. Epub 2021 May 1.

本文引用的文献

1
SIRT1-NOX4 signaling axis regulates cancer cachexia.
J Exp Med. 2020 Jul 6;217(7). doi: 10.1084/jem.20190745.
2
Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia.
Cancer Lett. 2020 Aug 1;484:29-39. doi: 10.1016/j.canlet.2020.04.017. Epub 2020 Apr 25.
3
Management of Cancer Cachexia: Attempting to Develop New Pharmacological Agents for New Effective Therapeutic Options.
Front Oncol. 2020 Mar 4;10:298. doi: 10.3389/fonc.2020.00298. eCollection 2020.
4
Modeling Human Cancer-induced Cachexia.
Cell Rep. 2019 Aug 6;28(6):1612-1622.e4. doi: 10.1016/j.celrep.2019.07.016.
5
The systemic activin response to pancreatic cancer: implications for effective cancer cachexia therapy.
J Cachexia Sarcopenia Muscle. 2019 Oct;10(5):1083-1101. doi: 10.1002/jcsm.12461. Epub 2019 Jul 8.
7
Pancreatic Cancer-Induced Cachexia and Relevant Mouse Models.
Pancreas. 2018 Sep;47(8):937-945. doi: 10.1097/MPA.0000000000001124.
8
Microscale Gene Expression Analysis of Tumor-Associated Macrophages.
Sci Rep. 2018 Feb 5;8(1):2408. doi: 10.1038/s41598-018-20820-4.
9
Evaluation of Macrophage Polarization in Pancreatic Cancer Microenvironment Under Hypoxia.
Methods Mol Biol. 2018;1742:265-276. doi: 10.1007/978-1-4939-7665-2_23.
10
Establishment and characterization of a novel murine model of pancreatic cancer cachexia.
J Cachexia Sarcopenia Muscle. 2017 Oct;8(5):824-838. doi: 10.1002/jcsm.12225. Epub 2017 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验