Suppr超能文献

由分数布朗运动驱动的多时间尺度分数阶随机微分方程的解析解及其应用

Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications.

作者信息

Ding Xiao-Li, Nieto Juan J

机构信息

Department of Mathematics, Xi'an Polytechnic University, Xi'an 710048, China.

Departamento de Estatística, Análisis Matemático y Optimización, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

出版信息

Entropy (Basel). 2018 Jan 16;20(1):63. doi: 10.3390/e20010063.

Abstract

In this paper, we investigate analytical solutions of multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. We firstly decompose homogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into independent differential subequations, and give their analytical solutions. Then, we use the variation of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. Finally, we give three examples to demonstrate the applicability of our obtained results.

摘要

在本文中,我们研究由分数布朗运动驱动的多时间尺度分数阶随机微分方程的解析解。我们首先将由分数布朗运动驱动的齐次多时间尺度分数阶随机微分方程分解为独立的微分子方程,并给出它们的解析解。然后,我们利用常数变易法得到由分数布朗运动驱动的非齐次多时间尺度分数阶随机微分方程的解。最后,我们给出三个例子来说明我们所得结果的适用性。

相似文献

3
Fractional calculus in hydrologic modeling: A numerical perspective.水文建模中的分数阶微积分:数值视角。
Adv Water Resour. 2013 Jan 1;51:479-497. doi: 10.1016/j.advwatres.2012.04.005. Epub 2012 May 4.
6
Approximation of SDEs: a stochastic sewing approach.随机微分方程的逼近:一种随机缝合方法。
Probab Theory Relat Fields. 2021;181(4):975-1034. doi: 10.1007/s00440-021-01080-2. Epub 2021 Jul 30.
7
Transient aging in fractional Brownian and Langevin-equation motion.分数布朗运动和朗之万方程运动中的瞬态老化
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062124. doi: 10.1103/PhysRevE.88.062124. Epub 2013 Dec 12.
10
Solutions of a disease model with fractional white noise.具有分数白噪声的疾病模型的解
Chaos Solitons Fractals. 2020 Aug;137:109840. doi: 10.1016/j.chaos.2020.109840. Epub 2020 Apr 30.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验